Partial Identification, Distributional Preferences, and the Welfare Ranking of Policies

Abstract We discuss the tension between “what we can get” (identification) and “what we want” (parameters of interest) in models of policy choice (treatment assignment). Our nonstandard empirical object of interest is the ranking of counterfactual policies. Partial identification of treatment effects maps into a partial welfare ranking of treatment assignment policies. We characterize the identified ranking and show how the identifiability of the ranking depends on identifying assumptions, the feasible policy set, and distributional preferences. An application to the project STAR experiment illustrates this dependence. This paper connects the literatures on partial identification, robust statistics, and choice under Knightian uncertainty.

[1]  Joshua D. Angrist,et al.  The Credibility Revolution in Empirical Economics: How Better Research Design is Taking the Con Out of Econometrics , 2010, SSRN Electronic Journal.

[2]  Maximilian Kasy,et al.  Using data to inform policy , 2014 .

[3]  T. Bewley Knightian decision theory. Part I , 2002 .

[4]  C. Manski Statistical treatment rules for heterogeneous populations , 2003 .

[5]  David Card Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems , 2000 .

[6]  W. Newey,et al.  Average and Quantile Effects in Nonseparable Panel Models , 2009, 0904.1990.

[7]  Jörg Stoye Minimax regret treatment choice with covariates or with limited validity of experiments , 2012 .

[8]  G. Imbens,et al.  Better Late than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009) , 2009 .

[9]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[10]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[11]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[12]  M. Rostek Quantile Maximization in Decision Theory , 2009 .

[13]  C. Rothe Nonparametric estimation of distributional policy effects , 2010 .

[14]  A. Krueger,et al.  Experimental Estimates of Education Production Functions , 1997 .

[15]  Raj Chetty,et al.  Sufficient Statistics for Welfare Analysis : A Bridge Between Structural and Reduced-Form Methods , 2009 .

[16]  C. Manski Choosing Treatment Policies Under Ambiguity , 2011 .

[17]  K. Hirano,et al.  Asymptotics for Statistical Treatment Rules , 2009 .

[18]  David S. Ahn,et al.  Government bonds and the cross-section of stock returns , 2005 .

[19]  Rajeev Dehejia,et al.  Program Evaluation as a Decision Problem , 1999 .

[20]  Gary Chamberlain,et al.  BAYESIAN ASPECTS OF TREATMENT CHOICE , 2011 .

[21]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[22]  J. Horowitz,et al.  Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data , 2000 .

[23]  Charles F. Manski,et al.  Ordinal utility models of decision making under uncertainty , 1988 .

[24]  Bryan S. Graham,et al.  Identifying Social Interactions Through Conditional Variance Restrictions , 2008 .

[25]  Charles F. Manski,et al.  SEMIPARAMETRIC ANALYSIS OF RANDOM EFFECTS LINEAR MODELS FROM BINARY PANEL DATA , 1987 .

[26]  N. Fortin,et al.  Unconditional Quantile Regressions , 2007 .

[27]  N. Fortin,et al.  Decomposition Methods in Economics , 2010 .

[28]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[29]  Thomas Lemieux,et al.  Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach , 1995 .

[30]  Debopam Bhattacharya,et al.  Inferring Optimal Peer Assignment From Experimental Data , 2009 .

[31]  J. Mirrlees An Exploration in the Theory of Optimum Income Taxation an Exploration in the Theory of Optimum Income Taxation L Y 2 , 2022 .

[32]  C. Manski Partial Identification of Probability Distributions , 2003 .

[33]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[34]  Maximilian Kasy Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment , 2014 .

[35]  M. Whinston,et al.  Taking the Dogma out of Econometrics: Structural Modeling and Credible Inference , 2010 .

[36]  Debopam Bhattacharya,et al.  Inferring Welfare Maximizing Treatment Assignment Under Budget Constraints , 2008 .

[37]  Jörg Stoye,et al.  Statistical decisions under ambiguity , 2011 .

[38]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[39]  Matthew Ryan,et al.  Generalizations of Seu: A Geometric Tour of Some Non-Standard Models , 2009 .

[40]  C. Manski Monotone Treatment Response , 2009, Identification for Prediction and Decision.

[41]  A. Deaton Instruments of Development: Randomization in the Tropics, and the Search for the Elusive Keys to Economic Development , 2009 .

[42]  V. Chernozhukov,et al.  Inference on Counterfactual Distributions , 2009, 0904.0951.

[43]  E. Gutiérrez-Peña,et al.  A decision-theoretical view of default priors , 2011 .

[44]  Edward Vytlacil,et al.  Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin , 2009, Econometrica : journal of the Econometric Society.

[45]  Maximilian Kasy Who wins, who loses? Tools for distributional policy evaluation , 2014 .

[46]  Angus Deaton Instruments, Randomization, and Learning about Development , 2010 .