Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements

Abstract— We report radiochemical neutron activation analysis (RNAA) data for U, Co, Au, Sb, Ga, Rb, Cs, Se, Ag, Te, Zn, In, Bi, Tl, and Cd (ordered by increasing ease of vaporization and loss from the Murchison CM2 chondrite during open‐system heating) in nine Antarctic C2 and C3 chondrites. These meteorites exhibit properties (obtained by reflectance spectroscopy, O isotopic mass spectrometry and/or mineralogy‐petrology) suggesting thermal metamorphism in their parent bodies.

[1]  T. Hiroi,et al.  Characterization of unusual CI/CM/CR meteorites from reflectance spectroscopy , 1997 .

[2]  R. Clayton,et al.  Oxygen Isotopes in Laboratory-heated CI and CM Chondrites , 1997 .

[3]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[4]  Yasuhiro Shibata Opaque minerals in Antarctic CO3 carbonaceous chondrites, Yamato-74135, -790992, -791717, -81020, -81025, -82050 and Allan Hills 77307 , 1996 .

[5]  Kenji Matsuoka,et al.  Yamato-86789: A heated CM-like carbonaceous chondrite , 1996 .

[6]  R. Binzel,et al.  Could G Asteroids be the Parent Bodies of the CM Chondrites , 1995 .

[7]  T. Noguchi Petrology and mineralogy of the PCA 91082 chondrite and its comparison with the Yamato-793495(CR) chondrite , 1995 .

[8]  T. Kojima,et al.  Ca-Al-rich inclusions in three Antarctic CO3 chondrites, Yamato-81020 Yamato-82050 and Yamato-790992: Record of lowtemperature alteration , 1995 .

[9]  M. Lipschutz,et al.  Chemical studies of H chondrites: 6. Antarctic/non‐Antarctic compositional differences revisited , 1995 .

[10]  Akai Junji Void structures in olivine grains in thermally metamorphosed Antarctic carbonaceous chondrite B-7904 , 1994 .

[11]  T. Sekine,et al.  Shock effects experiments on serpentine and thermal metamorphic conditions in Antarctic carbonaceous chondrite , 1994 .

[12]  M. Zolensky,et al.  Possible thermal metamorphism on the C, G, B, and F asteroids detected from their reflectance spectra in comparison with carbonaceous chondrites , 1994 .

[13]  M. Zolensky,et al.  Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.

[14]  M. Lipschutz,et al.  Labile trace elements in carbonaceous chondrites: A survey , 1992 .

[15]  J. Akai T-T-T diagram of serpentine and saponite, and estimation ofmetamorphic heating degree of Antarctic carbonaceous chondrites , 1992 .

[16]  Masamichi Miyamoto,et al.  Infrared diffuse reflectance spectra of several thermallymetamorphosed carbonaceous chondrites , 1992 .

[17]  A. Bischoff,et al.  Mineralogy and petrography of the anomalous carbonaceous chondrites Yamato-86720, Yamato-82162, and Belgica-7904 , 1991 .

[18]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[19]  K. Tomeoka Mineralogy and petrology of Belgica-7904: A new kind of carbonaceous chondrite from Antarctica , 1990 .

[20]  M. Lipschutz,et al.  Labile trace elements in lunar meteorite Yamato-86032 , 1990 .

[21]  Hideyasu,et al.  Yamato-82162: A new kind of CI carbonaceous chondrite found in Antarctica , 1989 .

[22]  K. Yanai,et al.  Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism , 1989 .

[23]  M. Lipschutz,et al.  Labile Trace Elements in Some Antarctic Carbonaceous Chondrites: Antarctic and Non-Antarctic Meteorite Comparisons , 1989 .

[24]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[25]  M. Lipschutz,et al.  Highly labile elements , 1988 .

[26]  E. Anders,et al.  Chemical fractionations in meteorites—XI. C2 chondrites , 1980 .

[27]  J. Morgan,et al.  Further studies of trace elements in C3 chondrites , 1978 .

[28]  M. Lipschutz,et al.  Thermal metamorphism of primitive meteorites. VI - Eleven trace elements in Murchison C2 chondrite heated at 400-1000 C , 1977 .