Simultaneous Core Partitions: Parameterizations and Sums

Fix coprime $s,t\ge1$. We re-prove, without Ehrhart reciprocity, a conjecture of Armstrong (recently verified by Johnson) that the finitely many simultaneous $(s,t)$-cores have average size $\frac{1}{24}(s-1)(t-1)(s+t+1)$, and that the subset of self-conjugate cores has the same average (first shown by Chen--Huang--Wang). We similarly prove a recent conjecture of Fayers that the average weighted by an inverse stabilizer---giving the "expected size of the $t$-core of a random $s$-core"---is $\frac{1}{24}(s-1)(t^2-1)$. We also prove Fayers' conjecture that the analogous self-conjugate average is the same if $t$ is odd, but instead $\frac{1}{24}(s-1)(t^2+2)$ if $t$ is even. In principle, our explicit methods---or implicit variants thereof---extend to averages of arbitrary powers. The main new observation is that the stabilizers appearing in Fayers' conjectures have simple formulas in Johnson's $z$-coordinates parameterization of $(s,t)$-cores. We also observe that the $z$-coordinates extend to parameterize general $t$-cores. As an example application with $t := s+d$, we count the number of $(s,s+d,s+2d)$-cores for coprime $s,d\ge1$, verifying a recent conjecture of Amdeberhan and Leven.

[1]  Ben Kane,et al.  On simultaneous s-cores/t-cores , 2009, Discret. Math..

[2]  Robin D. P. Zhou,et al.  On the enumeration of (s, s+1, s+2)-core partitions , 2014, Eur. J. Comb..

[3]  Jørn B. Olsson A theorem on the cores of partitions , 2009, J. Comb. Theory, Ser. A.

[4]  D. Stanton,et al.  Cranks andt-cores , 1990 .

[5]  Richard P. Stanley,et al.  The Catalan Case of Armstrong's Conjecture on Simultaneous Core Partitions , 2015, SIAM J. Discret. Math..

[6]  Susanna Fishel,et al.  A bijection between dominant Shi regions and core partitions , 2009, Eur. J. Comb..

[7]  William Y.C. Chen,et al.  Average Size of a Self-conjugate (s, t)-Core Partition , 2014 .

[8]  Paul Johnson,et al.  Lattice Points and Simultaneous Core Partitions , 2015, Electron. J. Comb..

[9]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[10]  R. Thrall,et al.  On the Modular Representations of the Symmetric Group , 1942 .

[11]  Matthew Fayers A generalisation of core partitions , 2014, J. Comb. Theory, Ser. A.

[12]  When Does the Set of $(a, b, c)$-Core Partitions Have a Unique Maximal Element? , 2015, Electron. J. Comb..

[13]  Lawrence Sze,et al.  Self-conjugate simultaneous p- and q-core partitions and blocks of An , 2009 .

[14]  Alain Lascoux Ordering the Affine Symmetric Group , 2001 .

[15]  Matthew Fayers The t-core of an s-core , 2011, J. Comb. Theory, Ser. A.

[16]  Dennis Stanton,et al.  CRANKS AND T -CORES , 1990 .

[17]  Christopher R. H. Hanusa,et al.  Results and conjectures on simultaneous core partitions , 2013, Eur. J. Comb..

[18]  Tewodros Amdeberhan,et al.  Multi-cores, posets, and lattice paths , 2014, Adv. Appl. Math..

[19]  D. Zeilberger,et al.  Explicit Expressions for the Variance and Higher Moments of the Size of a Simultaneous Core Partition and its Limiting Distribution , 2015, 1508.07637.

[21]  Dušan Djukić,et al.  The IMO Compendium: A Collection of Problems Suggested for the International Mathematical Olympiads: 1959-2009 , 2011 .

[22]  Gordon James,et al.  Mathematical Proceedings of the Cambridge Philosophical Society Some combinatorial results involving Young diagrams , 2022 .

[23]  Dennis Stanton,et al.  Block inclusions and cores of partitions , 2007 .

[24]  R. Dijkgraaf,et al.  Instantons on ALE spaces and orbifold partitions , 2007, 0712.1427.

[25]  Matthew Fayers,et al.  (s, t)-Cores: a Weighted Version of Armstrong's Conjecture , 2015, Electron. J. Comb..

[26]  Jaclyn Anderson,et al.  Partitions which are simultaneously t1- and t2-core , 2002, Discret. Math..

[27]  Amol Aggarwal Armstrong's conjecture for (k, mk+1)-core partitions , 2015, Eur. J. Comb..