Computing Nash equilibria through computational intelligence methods

[1]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[4]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[5]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[6]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[7]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[8]  Michael N. Vrahatis,et al.  On the alleviation of the problem of local minima in back-propagation , 1997 .

[9]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[10]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[13]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[15]  R. McKelvey A Liapunov Function for Nash Equilibria , 1998 .

[16]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.

[17]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[18]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[19]  Konstantinos E. Parsopoulos,et al.  Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method , 2002 .

[20]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[21]  Michael N. Vrahatis,et al.  Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[22]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[23]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[24]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[25]  Vassilis P. Plagianakos,et al.  Parallel evolutionary training algorithms for “hardware-friendly” neural networks , 2002, Natural Computing.

[26]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[27]  Barry O'Neill Handbook of Game Theory, Volume 3: Edited by Robert Aumann and Sergiu Hart, Elsevier, New York, 2002 , 2004, Games Econ. Behav..

[28]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[29]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.