Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents.

The discovery of an ultrafast cross-coupling of alkyl- and aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with reaction times ranging from 5 s to 5 min are thus generated in situ. High selectivities were observed for a range of heterocycles and functional groups as well as for an expanded scope of organolithium reagents. The applicability of this method was showcased by the synthesis of the [11 C]-labeled PET tracer celecoxib.

[1]  Indrek Kalvet,et al.  Rapid Room‐Temperature, Chemoselective Csp2 −Csp2 Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air , 2016, Angewandte Chemie.

[2]  Justin D. Smith,et al.  Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling , 2016 .

[3]  X. Liao,et al.  Nickel-Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide. , 2016, Angewandte Chemie.

[4]  B. Feringa,et al.  Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents , 2016, Nature Communications.

[5]  Anat Milo,et al.  Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes , 2016, Nature Chemistry.

[6]  B. Feringa,et al.  Nickel-Catalyzed Cross-Coupling of Organolithium Reagents with (Hetero)Aryl Electrophiles. , 2016, Chemistry.

[7]  T. Scattolin,et al.  Air-Stable Dinuclear Iodine-Bridged Pd(I) Complex - Catalyst, Precursor, or Parasite? The Additive Decides. Systematic Nucleophile-Activity Study and Application as Precatalyst in Cross-Coupling , 2015 .

[8]  B. Feringa,et al.  Palladium-Catalyzed C(sp(3))-C(sp(2)) Cross-Coupling of (Trimethylsilyl)methyllithium with (Hetero)Aryl Halides. , 2015, Organic letters.

[9]  S. Buchwald,et al.  Virtually instantaneous, room-temperature [(11)C]-cyanation using biaryl phosphine Pd(0) complexes. , 2015, Journal of the American Chemical Society.

[10]  B. Feringa,et al.  Direct catalytic cross-coupling of alkenyllithium compounds , 2014, Chemical science.

[11]  B. Feringa,et al.  Palladium-catalysed direct cross-coupling of organolithium reagents with aryl and vinyl triflates. , 2014, Chemistry.

[12]  J. A. Rincón,et al.  Green and scalable procedure for extremely fast ligandless Suzuki–Miyaura cross-coupling reactions in aqueous IPA using solid-supported Pd in continuous flow , 2014 .

[13]  H. Onoe,et al.  Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes. , 2014, Chemical record.

[14]  G. Knudsen,et al.  (11)C-labeling and preliminary evaluation of vortioxetine as a PET radioligand. , 2014, Bioorganic & medicinal chemistry letters.

[15]  B. Feringa,et al.  Catalytic direct cross-coupling of organolithium compounds with aryl chlorides. , 2013, Organic letters.

[16]  J. Pérez‐Juste,et al.  Supported Pd Nanoparticles for Carbon–Carbon Coupling Reactions , 2013, Topics in Catalysis.

[17]  B. Feringa,et al.  Direct catalytic cross-coupling of organolithium compounds , 2013, Nature Chemistry.

[18]  S. Buchwald,et al.  Mild and rapid Pd-catalyzed cross-coupling with hydrazine in continuous flow: application to the synthesis of functionalized heterocycles. , 2013, Angewandte Chemie.

[19]  Victor Snieckus,et al.  Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. , 2012, Angewandte Chemie.

[20]  V. Snieckus,et al.  Palladiumkatalysierte Kreuzkupplungen: eine historische Perspektive im Kontext der Nobel-Preise 2010 , 2012 .

[21]  Yangjie Wu,et al.  Fast Suzuki–Miyaura cross-coupling reaction catalyzed by the Na2Pd2Cl6 complex with ethyl calix[4]aryl acetate at room temperature in aqueous medium under ligand-free and ambient atmosphere , 2012 .

[22]  S. Nolan,et al.  N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. , 2011, Chemical Society reviews.

[23]  E. Negishi Die magische Kraft der Übergangsmetalle: Vergangenheit, Gegenwart und Zukunft (Nobel‐Aufsatz) , 2011 .

[24]  E. Negishi Magical power of transition metals: past, present, and future (Nobel Lecture). , 2011, Angewandte Chemie.

[25]  H. Neumann,et al.  Synthesis and Catalytic Applications of Stable Palladium Dioxygen Complexes , 2010 .

[26]  P. Knochel,et al.  i-PrI acceleration of Negishi cross-coupling reactions. , 2010, Organic letters.

[27]  M. Organ,et al.  Pd-PEPPSI-IPent: low-temperature negishi cross-coupling for the preparation of highly functionalized, tetra-ortho-substituted biaryls. , 2010, Angewandte Chemie.

[28]  Chun Liu,et al.  A fast and oxygen-promoted protocol for the ligand-free Suzuki reaction of 2-halogenated pyridines in aqueous media. , 2009, Chemical communications.

[29]  Peter J. H. Scott Methoden für den Einbau von Kohlenstoff‐11 zur Erzeugung von Radiopharmaka für die Positronenemissionstomographie , 2009 .

[30]  P. Scott Methods for the incorporation of carbon-11 to generate radiopharmaceuticals for PET imaging. , 2009, Angewandte Chemie.

[31]  P. Knochel,et al.  Radical catalysis of Kumada cross-coupling reactions using functionalized Grignard reagents. , 2009, Angewandte Chemie.

[32]  B. Ranu,et al.  A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions , 2008 .

[33]  D. Astruc,et al.  Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .

[34]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[35]  T. Rovis,et al.  A unique catalyst effects the rapid room-temperature cross-coupling of organozinc reagents with carboxylic acid fluorides, chlorides, anhydrides, and thioesters. , 2004, Journal of the American Chemical Society.

[36]  M. Yamashita,et al.  Synthesis, structure, and reductive elimination chemistry of three-coordinate arylpalladium amido complexes. , 2004, Journal of the American Chemical Society.

[37]  J. Yoshida,et al.  Diversity-oriented synthesis of tamoxifen-type tetrasubstituted olefins. , 2003, Journal of the American Chemical Society.

[38]  G. C. Fu,et al.  Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions , 2000 .

[39]  M. Reetz,et al.  Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. , 2000, Angewandte Chemie.

[40]  M. T. Reetz,et al.  Phosphanfreie Palladium‐katalysierte Kupplungen: die entscheidende Rolle von Pd‐Nanoteilchen , 2000 .

[41]  G. C. Fu,et al.  A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids. , 1998, Angewandte Chemie.

[42]  Adam F. Littke,et al.  EINE BEQUEME UND ALLGEMEIN ANWENDBARE METHODE FUR PD-KATALYSIERTE SUZUKI-KREUZKUPPLUNGEN VON ARYLCHLORIDEN UND ARYLBORONSAUREN , 1998 .

[43]  T. Holm α-Deuterium kinetic isotope effects in reactions of methyllithium: is better aggregation the cause of lower reactivity? , 1996 .

[44]  W. Vaalburg,et al.  Carbon-11 labelled methyllithium as methyl donating agent: The addition to 17-Keto steroids , 1980 .

[45]  T. Yoshida,et al.  Reactions of two-coordinate phosphine platinum(0) and palladium(0) compounds. Ligand exchange and reactivities toward small molecules , 1977 .

[46]  G. Somsen,et al.  These are not the final page numbers ! , 2019 .

[47]  P. Knochel,et al.  Radikalkatalyse in der Kumada‐Kreuzkupplung mit funktionalisierten Grignard‐Reagentien , 2009 .

[48]  Andrew J. P. White,et al.  Insertion of O2 into a Pd(I)–Pd(I) dimer and subsequent C–O bond formation by activation of a C–H bond , 2000 .

[49]  H. Kagan,et al.  A convenient method for the preparation of monolithioferrocene , 1990 .