Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents.
暂无分享,去创建一个
B. Feringa | C. Vila | W. Szymański | M. Stuart | P. Elsinga | F. Tosi | D. Heijnen
[1] Indrek Kalvet,et al. Rapid Room‐Temperature, Chemoselective Csp2 −Csp2 Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air , 2016, Angewandte Chemie.
[2] Justin D. Smith,et al. Synergistic and Selective Copper/ppm Pd-Catalyzed Suzuki–Miyaura Couplings: In Water, Mild Conditions, with Recycling , 2016 .
[3] X. Liao,et al. Nickel-Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide. , 2016, Angewandte Chemie.
[4] B. Feringa,et al. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents , 2016, Nature Communications.
[5] Anat Milo,et al. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes , 2016, Nature Chemistry.
[6] B. Feringa,et al. Nickel-Catalyzed Cross-Coupling of Organolithium Reagents with (Hetero)Aryl Electrophiles. , 2016, Chemistry.
[7] T. Scattolin,et al. Air-Stable Dinuclear Iodine-Bridged Pd(I) Complex - Catalyst, Precursor, or Parasite? The Additive Decides. Systematic Nucleophile-Activity Study and Application as Precatalyst in Cross-Coupling , 2015 .
[8] B. Feringa,et al. Palladium-Catalyzed C(sp(3))-C(sp(2)) Cross-Coupling of (Trimethylsilyl)methyllithium with (Hetero)Aryl Halides. , 2015, Organic letters.
[9] S. Buchwald,et al. Virtually instantaneous, room-temperature [(11)C]-cyanation using biaryl phosphine Pd(0) complexes. , 2015, Journal of the American Chemical Society.
[10] B. Feringa,et al. Direct catalytic cross-coupling of alkenyllithium compounds , 2014, Chemical science.
[11] B. Feringa,et al. Palladium-catalysed direct cross-coupling of organolithium reagents with aryl and vinyl triflates. , 2014, Chemistry.
[12] J. A. Rincón,et al. Green and scalable procedure for extremely fast ligandless Suzuki–Miyaura cross-coupling reactions in aqueous IPA using solid-supported Pd in continuous flow , 2014 .
[13] H. Onoe,et al. Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes. , 2014, Chemical record.
[14] G. Knudsen,et al. (11)C-labeling and preliminary evaluation of vortioxetine as a PET radioligand. , 2014, Bioorganic & medicinal chemistry letters.
[15] B. Feringa,et al. Catalytic direct cross-coupling of organolithium compounds with aryl chlorides. , 2013, Organic letters.
[16] J. Pérez‐Juste,et al. Supported Pd Nanoparticles for Carbon–Carbon Coupling Reactions , 2013, Topics in Catalysis.
[17] B. Feringa,et al. Direct catalytic cross-coupling of organolithium compounds , 2013, Nature Chemistry.
[18] S. Buchwald,et al. Mild and rapid Pd-catalyzed cross-coupling with hydrazine in continuous flow: application to the synthesis of functionalized heterocycles. , 2013, Angewandte Chemie.
[19] Victor Snieckus,et al. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. , 2012, Angewandte Chemie.
[20] V. Snieckus,et al. Palladiumkatalysierte Kreuzkupplungen: eine historische Perspektive im Kontext der Nobel-Preise 2010 , 2012 .
[21] Yangjie Wu,et al. Fast Suzuki–Miyaura cross-coupling reaction catalyzed by the Na2Pd2Cl6 complex with ethyl calix[4]aryl acetate at room temperature in aqueous medium under ligand-free and ambient atmosphere , 2012 .
[22] S. Nolan,et al. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. , 2011, Chemical Society reviews.
[23] E. Negishi. Die magische Kraft der Übergangsmetalle: Vergangenheit, Gegenwart und Zukunft (Nobel‐Aufsatz) , 2011 .
[24] E. Negishi. Magical power of transition metals: past, present, and future (Nobel Lecture). , 2011, Angewandte Chemie.
[25] H. Neumann,et al. Synthesis and Catalytic Applications of Stable Palladium Dioxygen Complexes , 2010 .
[26] P. Knochel,et al. i-PrI acceleration of Negishi cross-coupling reactions. , 2010, Organic letters.
[27] M. Organ,et al. Pd-PEPPSI-IPent: low-temperature negishi cross-coupling for the preparation of highly functionalized, tetra-ortho-substituted biaryls. , 2010, Angewandte Chemie.
[28] Chun Liu,et al. A fast and oxygen-promoted protocol for the ligand-free Suzuki reaction of 2-halogenated pyridines in aqueous media. , 2009, Chemical communications.
[29] Peter J. H. Scott. Methoden für den Einbau von Kohlenstoff‐11 zur Erzeugung von Radiopharmaka für die Positronenemissionstomographie , 2009 .
[30] P. Scott. Methods for the incorporation of carbon-11 to generate radiopharmaceuticals for PET imaging. , 2009, Angewandte Chemie.
[31] P. Knochel,et al. Radical catalysis of Kumada cross-coupling reactions using functionalized Grignard reagents. , 2009, Angewandte Chemie.
[32] B. Ranu,et al. A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions , 2008 .
[33] D. Astruc,et al. Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse , 2005 .
[34] Feng Lu,et al. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.
[35] T. Rovis,et al. A unique catalyst effects the rapid room-temperature cross-coupling of organozinc reagents with carboxylic acid fluorides, chlorides, anhydrides, and thioesters. , 2004, Journal of the American Chemical Society.
[36] M. Yamashita,et al. Synthesis, structure, and reductive elimination chemistry of three-coordinate arylpalladium amido complexes. , 2004, Journal of the American Chemical Society.
[37] J. Yoshida,et al. Diversity-oriented synthesis of tamoxifen-type tetrasubstituted olefins. , 2003, Journal of the American Chemical Society.
[38] G. C. Fu,et al. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions , 2000 .
[39] M. Reetz,et al. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. , 2000, Angewandte Chemie.
[40] M. T. Reetz,et al. Phosphanfreie Palladium‐katalysierte Kupplungen: die entscheidende Rolle von Pd‐Nanoteilchen , 2000 .
[41] G. C. Fu,et al. A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids. , 1998, Angewandte Chemie.
[42] Adam F. Littke,et al. EINE BEQUEME UND ALLGEMEIN ANWENDBARE METHODE FUR PD-KATALYSIERTE SUZUKI-KREUZKUPPLUNGEN VON ARYLCHLORIDEN UND ARYLBORONSAUREN , 1998 .
[43] T. Holm. α-Deuterium kinetic isotope effects in reactions of methyllithium: is better aggregation the cause of lower reactivity? , 1996 .
[44] W. Vaalburg,et al. Carbon-11 labelled methyllithium as methyl donating agent: The addition to 17-Keto steroids , 1980 .
[45] T. Yoshida,et al. Reactions of two-coordinate phosphine platinum(0) and palladium(0) compounds. Ligand exchange and reactivities toward small molecules , 1977 .
[46] G. Somsen,et al. These are not the final page numbers ! , 2019 .
[47] P. Knochel,et al. Radikalkatalyse in der Kumada‐Kreuzkupplung mit funktionalisierten Grignard‐Reagentien , 2009 .
[48] Andrew J. P. White,et al. Insertion of O2 into a Pd(I)–Pd(I) dimer and subsequent C–O bond formation by activation of a C–H bond , 2000 .
[49] H. Kagan,et al. A convenient method for the preparation of monolithioferrocene , 1990 .