Convexity of the support of the displacement interpolation: Counterexamples
暂无分享,去创建一个
[1] Nicola Gigli,et al. On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .
[2] Luis A. Caffarelli,et al. A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity , 1990 .
[3] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[4] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[5] Alessio Figalli,et al. The Monge–Ampère equation and its link to optimal transportation , 2013, 1310.6167.
[6] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[7] Filippo Santambrogio,et al. Existence and Uniqueness of Equilibrium for a Spatial Model of Social Interactions , 2016 .
[8] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[9] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[10] C. Villani. The founding fathers of optimal transport , 2009 .
[11] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[12] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[13] L. Caffarelli. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .
[14] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[15] L. Caffarelli. Some regularity properties of solutions of Monge Ampère equation , 1991 .