Computing Hypergeometric Functions Rigorously

We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1, 1F1, 2F1, and 2F0 (or the Kummer U-function) are supported for unrestricted complex parameters and argument, and, by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq and computation of high-order parameter derivatives.

[1]  Peter Borwein Reduced complexity evaluation of hypergeometric functions , 1987 .

[2]  Peter Stevenhagen,et al.  Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography , 2011 .

[3]  Richard P. Brent,et al.  Fast computation of Bernoulli, Tangent and Secant numbers , 2011, ArXiv.

[4]  Robert C. Forrey,et al.  Computing the Hypergeometric Function , 1997 .

[5]  Andreas Öchsner,et al.  Maxima—A Computer Algebra System , 2019 .

[6]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[7]  J. Pearson Computation of Hypergeometric Functions , 2009 .

[8]  Jonathan M. Borwein,et al.  High-precision arithmetic in mathematical physics , 2015 .

[9]  D. V. Chudnovsky,et al.  Approximations and complex multiplication according to Ramanujan , 2000 .

[10]  David M. Smith Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions , 2001, TOMS.

[11]  M. V. Stoitsov,et al.  Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions , 2007, Comput. Phys. Commun..

[12]  Fredrik Johansson Efficient Implementation of Elementary Functions in the Medium-Precision Range , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.

[13]  Marc Mezzarobba,et al.  Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath , 2016, ArXiv.

[14]  Fredrik Johansson,et al.  Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights , 2018, SIAM J. Sci. Comput..

[15]  Richard P. Brent,et al.  Modern Computer Arithmetic , 2010 .

[16]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[17]  N. M. Temme,et al.  The numerical computation of the confluent hypergeometric functionU(a, b, z) , 1983 .

[18]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..

[19]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[20]  Fredrik Johansson,et al.  Arb: a C library for ball arithmetic , 2014, ACCA.

[21]  David Gaspard,et al.  Connection formulas between Coulomb wave functions , 2018, Journal of Mathematical Physics.

[22]  SANDRA FILLEBROWN,et al.  Faster Computation of Bernoulli Numbers , 1992, J. Algorithms.

[23]  Sven Köhler,et al.  On the Stability of Fast Polynomial Arithmetic , 2008 .

[24]  Bruno Salvy,et al.  Effective bounds for P-recursive sequences , 2009, J. Symb. Comput..

[25]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[26]  THE MPFR LIBRARY: ALGORITHMS AND PROOFS , 2006 .

[27]  V. E. Wood Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Nat. Bur. Standards, Washington, D.C., 1964) edited by M. Abramowitz and I. A. Stegun , 1969 .

[28]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[29]  Peter Borwein,et al.  An efficient algorithm for the Riemann zeta function , 1995 .

[30]  Jonathan M. Borwein,et al.  Computational strategies for the Riemann zeta function , 2000 .

[31]  Joris van der Hoeven,et al.  Efficient accelero-summation of holonomic functions , 2007, J. Symb. Comput..

[32]  Marc Mezzarobba,et al.  Autour de l'évaluation numérique des fonctions D-finies , 2011 .

[33]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[34]  Fredrik Johansson,et al.  Evaluating parametric holonomic sequences using rectangular splitting , 2013, ISSAC.

[35]  Andrew R. Booker,et al.  Effective computation of Maass cusp forms , 2006 .

[36]  B. C. Carlson Elliptic Integrals of the First Kind , 1977 .

[37]  Sylvain Chevillard,et al.  Multiple-Precision Evaluation of the Airy Ai Function with Reduced Cancellation , 2012, 2013 IEEE 21st Symposium on Computer Arithmetic.

[38]  Marc Mezzarobba,et al.  NumGfun: a package for numerical and analytic computation with D-finite functions , 2010, ISSAC.

[39]  Mark Sofroniou,et al.  Precise numerical computation , 2005, J. Log. Algebraic Methods Program..

[40]  T. P. Stefanski Electromagnetic Problems Requiring High-Precision Computations , 2013, IEEE Antennas and Propagation Magazine.

[41]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[42]  At Linz,et al.  Fast and Rigorous Computation of Special Functions to High Precision , 2014 .

[43]  Fabrice Rouillier,et al.  Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library , 2005, Reliab. Comput..

[44]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[45]  José E. Moreira,et al.  Hypergeometric Functions in Exact Geometric Computation , 2002, CCA.

[46]  D. J. Bernstein Fast multiplication and its applications , 2008 .

[47]  E. A. Karatsuba FAST EVALUATION OF THE HURWITZ ZETA FUNCTION AND DIRICHLET L-SERIES , 1998 .

[48]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[49]  Martin Ziegler,et al.  Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications , 2005, ArXiv.

[50]  A. I. Bogolubsky,et al.  Fast evaluation of the hypergeometric function pFp−1(a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s) , 2006, Programming and Computer Software.

[51]  J. Spouge Computation of the gamma, digamma, and trigamma functions , 1994 .

[52]  D. V. Chudnovsky,et al.  Computer Algebra in the Service of Mathematical Physics and Number Theory , 2020, Computers in Mathematics.

[53]  Fredrik Johansson,et al.  Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.

[54]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[55]  Joshua L. Willis,et al.  Acceleration of generalized hypergeometric functions through precise remainder asymptotics , 2011, Numerical Algorithms.

[56]  Keith E. Muller,et al.  Computing the confluent hypergeometric function, M(a,b,x) , 2001, Numerische Mathematik.

[57]  Jean Reignier,et al.  Singularities of Ordinary Linear Differential Equations and Integrability , 1999 .

[58]  Zilin Du,et al.  Guaranteed Precision for Transcendental and Algebraic Computation Made Easy , 2006 .

[59]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions Near and in Regular Singularities , 2001, J. Symb. Comput..

[60]  David H. Bailey,et al.  MPFUN2015: A Thread-Safe Arbitrary Precision Computation Package (Full Documentation) , 2015 .

[61]  Annie A. M. Cuyt,et al.  Validated computation of certain hypergeometric functions , 2012, TOMS.

[62]  Jonathan M. Borwein,et al.  Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind , 1992 .

[63]  D. E. G. Hare,et al.  Computing the Principal Branch of log-Gamma , 1997, J. Algorithms.

[64]  Fredrik Johansson,et al.  Rigorous high-precision computation of the Hurwitz zeta function and its derivatives , 2013, Numerical Algorithms.

[65]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[66]  David M. Smith,et al.  Efficient multiple-precision evaluation of elementary functions , 1989 .

[67]  Bruno Haible,et al.  Fast Multiprecision Evaluation of Series of Rational Numbers , 1998, ANTS.

[68]  Mason A. Porter,et al.  Numerical methods for the computation of the confluent and Gauss hypergeometric functions , 2014, Numerical Algorithms.

[69]  Mark Nardin,et al.  Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes , 1992 .

[70]  Masao Kodama,et al.  Algorithm 912: A Module for Calculating Cylindrical Functions of Complex Order and Complex Argument , 2011, TOMS.

[71]  F. Olver Asymptotics and Special Functions , 1974 .

[72]  P. Schmelcher,et al.  The analytic continuation of the Gaussian hypergeometric function 2 F 1 ( a,b;c;z ) for arbitrary parameters , 2000 .

[73]  Technisch-Naturwissenschaftliche Fakultät,et al.  Fast and Rigorous Computation of Special Functions to High Precision , 2014 .

[74]  Richard P. Brent,et al.  The complexity of multiple-precision arithmetic , 2010, ArXiv.

[75]  Fredrik Johansson,et al.  A bound for the error term in the Brent-McMillan algorithm , 2013, Math. Comput..

[76]  J. Borwein,et al.  Integrals of the Ising Class , 2006 .

[77]  U. D. Jentschura,et al.  Numerical calculation of Bessel, Hankel and Airy functions , 2011, Comput. Phys. Commun..