Parameter Identification of Induction Motors

The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most of the industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation, they frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This chapter presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the presented method uses a recent evolutionary method called the Gravitational Search Algorithm (GSA). Different to the most of existent evolutionary algorithms, GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the presented scheme.

[1]  Junita Mohamad-Saleh,et al.  Multiple-global-best guided artificial bee colony algorithm for induction motor parameter estimation , 2014 .

[2]  Samuel S. Waters,et al.  Modeling Induction Motors for System Studies , 1983, IEEE Transactions on Industry Applications.

[3]  M. Gomez-Gonzalez,et al.  Estimation of induction motor parameters using shuffled frog-leaping algorithm , 2013 .

[4]  Dinesh Kumar,et al.  Automatic cluster evolution using gravitational search algorithm and its application on image segmentation , 2014, Eng. Appl. Artif. Intell..

[5]  F. S. van der Merwe,et al.  Induction motor parameter estimation through an output error technique , 1994 .

[6]  T. Jayabarathi,et al.  Combined heat and power economic dispatch problem using firefly algorithm , 2013 .

[7]  Emre Dandil,et al.  Artificial immunity-based induction motor bearing fault diagnosis , 2013 .

[8]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[9]  Weiping Zhang,et al.  Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm , 2013, Knowl. Based Syst..

[10]  Mahdi Aliyari Shoorehdeli,et al.  Stability analysis of particle dynamics in gravitational search optimization algorithm , 2016, Inf. Sci..

[11]  Srikrishna Subramanian,et al.  An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm , 2011 .

[12]  Farshad Merrikh-Bayat,et al.  New Method for Accurate Parameter Estimation of Induction Motors Based on Artificial Bee Colony Algorithm , 2014, ArXiv.

[13]  Srikrishna Subramanian,et al.  On-site efficiency evaluation of three-phase induction motor based on particle swarm optimization , 2011 .

[14]  S. Baskar,et al.  A novel efficiency improvement measure in three-phase induction motors, its conservation potential and economic analysis , 2008 .

[15]  Hossein Nezamabadi-pour,et al.  A gravitational search algorithm for multimodal optimization , 2014, Swarm Evol. Comput..

[16]  R. R. Bishop,et al.  Identifying induction machine parameters using a genetic optimization algorithm , 1990, IEEE Proceedings on Southeastcon.

[17]  Hamid Reza Mohammadi,et al.  Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization , 2014 .

[18]  P. Vadstrup,et al.  Parameter identification of induction motors using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  F. Shokooh,et al.  Parameter estimation for induction machines based on sensitivity analysis , 1988, Record of Conference Papers., Industrial Applications Society 35th Annual Petroleum and Chemical Industry Conference,.