The Flow of Thin Liquid Films Over Spinning Discs

Continous thin liquid film flows over spinning discs present technological advantages in that the liquid film thickness can be controlled by the rotation speed, and can be made very thin, providing very good heat and mass transfer characteristics. A review of the work which has been carried out on such flows is presented. The major results of the most relevant experimental and modelling studies are highlighted. These have demonstrated that the flow is accompanied by complex dynamics, which features the formation of large-amplitude waves. These waves have been shown to enhance the rates of mass transfer and mixing leading to process intensification. Important advances in both modelling and experimentation have been made towards achieving fundamental understanding of the wave dynamics and its exploitation for technological applications in industrial settings. This review concludes with a summary of the current state of the art and suggestions for future research directions. Les ecoulements de films liquides minces continus au-dessus de disques rotatifs presentent des avantages technologiques; en effet, l'epaisseur du film peut etre controlee par la vitesse de rotation et elle peut devenir tres mince, donnant de tres bonnes caracteristiques de transfert de chaleur et de matiere. On presente une etude de la recherche menee sur de tels ecoulements. Les principaux resultats des etudes experimentales et de modelisation les plus pertinentes sont presentes. Ceux-ci demontrent que l'ecoulement s'accompagne de dynamiques complexes, dont la formation d'ondes de grande amplitude. On a trouve que ces ondes amelioraient les vitesses de transfert de matiere et le melange menant a l'intensification des procedes. Des progres importants tant dans la modelisation que l'experimentation ont ete effectues pour comprendre de maniere fondamentale la dynamique des ondes et son exploitation pour des applications technologiques en milieu industriel. Cet article se termine par un resume de l'etat de l'art et des suggestions de nouvelles pistes de recherche.

[1]  Geoffrey F. Hewitt,et al.  Thin film flow over structured packings at moderate Reynolds numbers , 2005 .

[2]  J. Clark,et al.  Classical cationic polymerization of styrene in a spinning disc reactor using silica‐supported BF3 catalyst , 2006 .

[3]  O. Matar,et al.  Gas absorption into a wavy film flowing over a spinning disc , 2005 .

[4]  J. Clark,et al.  Rearrangement of α-pinene oxide using a surface catalysed spinning disc reactor (SDR) , 2004 .

[5]  Grigori M. Sisoev,et al.  The flow of thin liquid films over spinning disks: Hydrodynamics and mass transfer , 2005 .

[6]  K. Javdani Mass transfer in wavy liquid films , 1974 .

[7]  Flow of a viscous liquid film on the surface of a rotating disk , 1986 .

[8]  S. Kalliadasis,et al.  Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation , 2004 .

[9]  Kamelia Boodhoo,et al.  Process intensification: spinning disk reactor for styrene polymerisation , 2000 .

[10]  E. Ruckenstein,et al.  Mass transfer in wave flow , 1965 .

[11]  R. Roberts,et al.  Wave-enhanced interfacial transfer , 2000 .

[12]  M. Velarde,et al.  Influence of a sureactant on the instability of a falling liquid film , 2000 .

[13]  H. Espig,et al.  Waves in a thin liquid layer on a rotating disk , 1965, Journal of Fluid Mechanics.

[14]  Roshan Jeet Jee Jachuck,et al.  Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique , 2005 .

[15]  S. Kalliadasis,et al.  Dynamics of a reactive falling film at large Péclet numbers. II. Nonlinear waves far from criticality: Integral-boundary-layer approximation , 2004 .

[16]  W. Nusselt Die Oberflachenkondensation des Wasserdampfes , 1916 .

[17]  Sanjoy Banerjee,et al.  Mass transfer to falling wavy liquid films at low Reynolds numbers , 1967 .

[18]  A numerical study of interfacial transport to a gas-sheared wavy liquid , 1998 .

[19]  O. Matar,et al.  The flow of a thin conducting film over a spinning disc in the presence of an electric field , 2005 .

[20]  G. Peev,et al.  Film flow on a horizontal rotating disk , 2003 .

[21]  Scott K. Thomas,et al.  Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk , 1991 .

[22]  J. D. Cole,et al.  An Asymptotic Solution for the Laminar Flow of a Thin Film on a Rotating Disk , 1973 .

[23]  Fredrik Setterwall,et al.  On the instabilities of vertical falling liquid films in the presence of surface-active solute , 1994, Journal of Fluid Mechanics.

[24]  J. Robert Selman,et al.  Mass-Transfer Measurements by the Limiting-Current Technique , 1978 .

[25]  K. Roesner,et al.  Surface instabilities of thin liquid film flow on a rotating disk , 1999 .

[26]  A. Dukler,et al.  A numerical study of mass transfer in free falling wavy films , 1990 .

[27]  Y. Miyasaka On the Flow of a Viscous Free Boundary Jet on a Rotating Disk : 2nd Report Comparison of Experimental Results with Caluculated Values by means of Film Thickness , 1974 .

[28]  A. G. Emslie,et al.  Flow of a Viscous Liquid on a Rotating Disk , 1958 .

[29]  G. M. Sisoev,et al.  Waves induced by instability in falling films of finite thickness , 2004 .

[30]  O. Matar,et al.  The effect of surfactant on the flow of a thin liquid film over a spinning disc , 2006 .

[31]  Thermal effects on film development during spin coating , 2005 .

[32]  V. Ya. Shkadov,et al.  Wave flow regimes of a thin layer of viscous fluid subject to gravity , 1967 .

[33]  G. M. Sisoev,et al.  A two-parameter manifold of wave solutions to an equation for a falling film of a viscous fluid , 1999 .

[34]  J. Merkin,et al.  The development of nonlinear waves on the surface of a horizontally rotating thin liquid film , 1987, Journal of Fluid Mechanics.

[35]  R. H. Perry,et al.  The effect of wave induced turbulence on the rate of absorption of gases in falling liquid films , 1966 .

[36]  G. M. Sisoev,et al.  Numerical bifurcation analysis of the travelling waves on a falling liquid film , 2005 .

[37]  R. Kelly,et al.  The flow and stability of thin liquid films on a rotating disk , 1972, Journal of Fluid Mechanics.

[38]  Tim G. Myers,et al.  Thin Films with High Surface Tension , 1998, SIAM Rev..

[39]  Amir Faghri,et al.  Experiments on the flow of a thin liquid film over a horizontal stationary and rotating disk surface , 2003 .

[40]  R. Higbie,et al.  The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure , 1935 .

[41]  M. Meyer,et al.  Study of a laminar falling film flowing over a wavy wall column: Part I. Numerical investigation of the flow pattern and the coupled heat and mass transfer , 2001 .

[42]  E. Demekhin,et al.  ON THE NON-UNIQUENESS. OF NON-LINEAR WAVE SOLUTIONS IN A VISCOUS LAYER* , 1984 .

[43]  R. Jachuck,et al.  Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements , 2005 .

[44]  Kamelia Boodhoo,et al.  Process intensification: spinning disc reactor for condensation polymerisation , 2000 .

[45]  M. Meyer,et al.  Study of a laminar falling film flowing over a wavy wall column: Part II. Experimental validation of hydrodynamic model , 2001 .

[46]  Majeed S. Jassim,et al.  Thin film solvent‐free photopolymerization of n‐butyl acrylate. I. Static film studies , 2004 .

[47]  Unsteady flow of thin liquid film on a disk under nonuniform rotation , 2001 .

[48]  Linear stability of stratified channel flow , 1995 .

[49]  S. Matsumoto,et al.  THE THICKNESS OF AVISCOUS LIQUID FILM ON A ROTATING DISK , 1974 .

[50]  Colin Ramshaw,et al.  Process intensification : heat and mass transfer characteristics of liquid films on rotating discs , 1999 .

[51]  Y. Miyasaka On the Flow of a viscous Free Boundary Jet on a Rotating Disk : 1st Report Theoretical analysis , 1974 .

[52]  Colin Ramshaw,et al.  Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique , 2003 .

[53]  Grigori M. Sisoev,et al.  Modelling of film flow over a spinning disk , 2003 .

[54]  D. R. Oliver,et al.  Mass transfer to liquid films on an inclined plane , 1968 .

[55]  William Paul Woods The hydrodynamics of thin liquid films flowing over a rotating disc , 1995 .

[56]  K. Roesner,et al.  Effect of surfactants on the stability of thin liquid film flow on a rotating disk. , 2003, Journal of colloid and interface science.

[57]  V. Bontozoglou,et al.  Regular Article: Computer Aided Analysis of Viscous Film Flow along an Inclined Wavy Wall , 1999 .

[58]  C. Ramshaw,et al.  Process intensification: Heat transfer characteristics of tailored rotating surfaces , 1994 .

[59]  T. Myers,et al.  The effect of the Coriolis force on axisymmetric rotating thin film flows , 2001 .

[60]  O. Matar,et al.  Absorption of gas into a wavy falling film , 2005 .

[61]  T. Langrish,et al.  Thickness and velocity of wavy liquid films on rotating conical surfaces , 2001 .

[62]  Flow and heat transfer in a film of viscous liquid on a rotating disk , 1967 .

[63]  V. Nakoryakov,et al.  Heat transfer from a cylinder in a sound field at grashof numbers approaching zero , 1965 .