Sieve Empirical Likelihood and Extensions of the Generalized Least Squares

The empirical likelihood cannot be used directly sometimes when an infinite dimensional parameter of interest is involved. To overcome this difficulty, the sieve empirical likelihoods are introduced in this paper. Based on the sieve empirical likelihoods, a unified procedure is developed for estimation of constrained parametric or non-parametric regression models with unspecified error distributions. It shows some interesting connections with certain extensions of the generalized least squares approach. A general asymptotic theory is provided. In the parametric regression setting it is shown that under certain regularity conditions the proposed estimators are asymptotically efficient even if the restriction functions are discontinuous. In the non-parametric regression setting the convergence rate of the maximum estimator based on the sieve empirical likelihood is given. In both settings, it is shown that the estimator is adaptive for the inhomogeneity of conditional error distributions with respect to predictor, especially for heteroscedasticity.

[1]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[2]  Jianqing Fan,et al.  Sieve empirical likelihood ratio tests for nonparametric functions , 2004, math/0503667.

[3]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[4]  Yuichi Kitamura,et al.  An Information-Theoretic Alternative to Generalized Method of Moments Estimation , 1997 .

[5]  W. Wong,et al.  Convergence Rate of Sieve Estimates , 1994 .

[6]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[7]  Empirical Likelihood Estimation of Levy Processes (Revised in March 2005) , 2004 .

[8]  Sara van de Geer,et al.  Penalized quasi-likelihood estimation in partial linear models , 1997 .

[9]  Xiaotong Shen,et al.  Random Sieve Likelihood and General Regression Models , 1999 .

[10]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[11]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[12]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[13]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[14]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[15]  W. Wong,et al.  Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .

[16]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[17]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[18]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[19]  L. Hansen LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .

[20]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[21]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[22]  Gary Chamberlain,et al.  Efficiency Bounds for Semiparametric Regression , 1992 .

[23]  Jian Zhang,et al.  Local polynomial fitting based on empirical likelihood , 2003 .

[24]  David Ruppert,et al.  Fitting heteroscedastic regression models , 1994 .

[25]  M. LeBlanc,et al.  Semiparametric Regression Functionals , 1995 .

[26]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[27]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[28]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[29]  W. Wong,et al.  On Maximum Likelihood Estimation in Infinite-Dimensional Parameter Spaces , 1991 .

[30]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[31]  Yuichi Kitamura,et al.  Empirical likelihood methods with weakly dependent processes , 1997 .