Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single cell level

Gene regulatory networks (GRNs) can be used to describe gene interactions of various complex biological processes such as embryonic development, regeneration and disease. The GRN orchestrating endomesoderm development in the purple sea urchin Strongylocentrotus purpuratus pre-gastrula embryo has been the subject of multiple studies. Drafting GRNs requires embryological knowledge pertaining to the cell type families, information on the regulatory genes that control the regulatory state of the cell type family, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis, which helps identify the cis-regulatory modules (CRMs) of the regulatory genes. We use multi-omics involving next-generation sequencing (-seq) to obtain the necessary information for GRN drafting. Here we present an update to the sea urchin posterior gut GRN using i) a single cell RNA-seq derived cell atlas highlighting the 2 day post fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at single cell level, ii) a set of putative CRMs and transcription factor (TF) binding sites obtained from chromatin accessibility ATAC-seq data, and iii) interactions directionality obtained from differential bulk RNA-seq following knockdown of the TF Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1 positive cells in the 2 dpf gastrula embryo. Overall, our data resolves the complex connectivity of the posterior gut GRN and increases the resolution of gene regulatory cascades operating within it.

[1]  James J. Cai,et al.  Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks , 2023, Nucleic acids research.

[2]  N. Sakamoto,et al.  The Crucial Role of CTCF in Mitotic Progression during Early Development of Sea Urchin , 2023, bioRxiv.

[3]  Alireza F. Siahpirani,et al.  Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets , 2023, bioRxiv.

[4]  Tae-Young Roh,et al.  Forkhead box protein D2 suppresses colorectal cancer by reprogramming enhancer interactions , 2023, Nucleic acids research.

[5]  S. V. van Heeringen,et al.  Computational approaches to understand transcription regulation in development , 2023, Biochemical Society Transactions.

[6]  M. Arnone,et al.  An ancestral Wnt–Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes , 2022, Nature Ecology & Evolution.

[7]  M. Arnone,et al.  A New Model Organism to Investigate Extraocular Photoreception: Opsin and Retinal Gene Expression in the Sea Urchin Paracentrotus lividus , 2022, Cells.

[8]  M. Arnone,et al.  Integrating single cell transcriptomics and volume electron microscopy confirms the presence of pancreatic acinar-like cells in sea urchins , 2022, Frontiers in Cell and Developmental Biology.

[9]  G. Wray,et al.  Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins , 2022, bioRxiv.

[10]  Wanlu Song,et al.  Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos. , 2022, Cell reports.

[11]  Guoji Guo,et al.  Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming , 2022, The Journal of experimental medicine.

[12]  J. Zhang,et al.  A Potential Prognostic Marker PRDM1 in Pancreatic Adenocarcinoma , 2022, Journal of oncology.

[13]  M. Arnone,et al.  FISH for All: A Fast and Efficient Fluorescent In situ Hybridization (FISH) Protocol for Marine Embryos and Larvae , 2022, Frontiers in Physiology.

[14]  H. Kiyonari,et al.  A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach , 2022, Cellular and molecular gastroenterology and hepatology.

[15]  W. Longabaugh,et al.  Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development , 2020, Nature Communications.

[16]  D. McClay,et al.  Developmental Single-cell transcriptomics in the Lytechinus variegatus Sea Urchin Embryo , 2020, bioRxiv.

[17]  M. Arnone,et al.  Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond. , 2020, Methods in molecular biology.

[18]  T. Takebe,et al.  Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis , 2020, Nature Communications.

[19]  C. Calestani,et al.  Regulation of dynamic pigment cell states at single-cell resolution , 2020, eLife.

[20]  C. Ettensohn The gene regulatory control of sea urchin gastrulation , 2020, Mechanisms of Development.

[21]  M. Looso,et al.  Beyond accessibility: ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation , 2019, bioRxiv.

[22]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[23]  M. Arnone,et al.  Development and evolution of gut structures: from molecules to function , 2019, Cell and Tissue Research.

[24]  Xin-Xin Yu,et al.  Defining multistep cell fate decision pathways during pancreatic development at single‐cell resolution , 2019, The EMBO journal.

[25]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[26]  C. Ettensohn,et al.  Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling , 2018, BMC genomics.

[27]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[28]  T. Meitinger,et al.  Genome-wide analysis of PDX1 target genes in human pancreatic progenitors , 2018, Molecular metabolism.

[29]  Yuzuo Bai,et al.  FOXD3/FOXD4 is required for the development of hindgut in the rat model of anorectal malformation , 2018, Experimental biology and medicine.

[30]  Parul Kudtarkar,et al.  Echinobase: an expanding resource for echinoderm genomic information , 2017, Database J. Biol. Databases Curation.

[31]  Yijun Ruan,et al.  Evolutionarily Conserved Principles Predict 3D Chromatin Organization. , 2017, Molecular cell.

[32]  Katherine M. Buckley,et al.  Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva , 2016, Immunology and cell biology.

[33]  Isabelle S. Peter,et al.  Sequential Response to Multiple Developmental Network Circuits Encoded in an Intronic cis-Regulatory Module of Sea Urchin hox11/13b. , 2017, Cell reports.

[34]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[35]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[36]  M. Arnone,et al.  Echinoderm systems for gene regulatory studies in evolution and development. , 2016, Current opinion in genetics & development.

[37]  M. Arnone,et al.  A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva , 2016, BMC Evolutionary Biology.

[38]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[39]  M. Arnone,et al.  Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm , 2015, eLife.

[40]  Andrew C. Nelson,et al.  Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation , 2015, PLoS genetics.

[41]  M. Arnone,et al.  Author response: Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm , 2015 .

[42]  L. Stanton,et al.  PDX1 Binds and Represses Hepatic Genes to Ensure Robust Pancreatic Commitment in Differentiating Human Embryonic Stem Cells , 2015, Stem cell reports.

[43]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[44]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[45]  Isabelle S. Peter,et al.  Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo , 2014, Proceedings of the National Academy of Sciences.

[46]  Nicholas H. Putnam,et al.  The Transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: A Window into Chordate Evolution , 2014, Genome biology and evolution.

[47]  Jun Yu,et al.  Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer , 2014, The Journal of pathology.

[48]  M. Arnone,et al.  A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin , 2014, Development.

[49]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[50]  M. Arnone,et al.  Pattern and process during sea urchin gut morphogenesis: The regulatory landscape , 2014, Genesis.

[51]  C. J. McManus,et al.  Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins , 2014, Development.

[52]  P. Oliveri,et al.  Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors , 2013, EvoDevo.

[53]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[54]  C. McCarty,et al.  Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus. , 2013, Biochemical and biophysical research communications.

[55]  R. Gibbs,et al.  Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis , 2012, Genome research.

[56]  É. Röttinger,et al.  Evolutionary crossroads in developmental biology: hemichordates , 2012, Development.

[57]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[58]  R. Angerer,et al.  Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling , 2012, Development.

[59]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[60]  D. McClay Evolutionary crossroads in developmental biology: sea urchins , 2011, Development.

[61]  Kosei Ito RUNX3 in oncogenic and anti‐oncogenic signaling in gastrointestinal cancers , 2011, Journal of cellular biochemistry.

[62]  S. Magness,et al.  Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[63]  K. Zhao,et al.  Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription , 2011, Nature Structural &Molecular Biology.

[64]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[65]  E. Davidson,et al.  Information processing at the foxa node of the sea urchin endomesoderm specification network , 2010, Proceedings of the National Academy of Sciences.

[66]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[67]  Eric H Davidson,et al.  The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. , 2010, Developmental biology.

[68]  E. Davidson,et al.  Functional cis-regulatory genomics for systems biology , 2010, Proceedings of the National Academy of Sciences.

[69]  Celina E. Juliano,et al.  Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. , 2010, Developmental biology.

[70]  Stephanie Grainger,et al.  Cdx2 regulates patterning of the intestinal epithelium. , 2009, Developmental biology.

[71]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[72]  M. Arnone,et al.  Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox. , 2009, Gene expression patterns : GEP.

[73]  K. Kaestner,et al.  Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. , 2009, Developmental cell.

[74]  M. Arnone,et al.  Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut , 2009, Development.

[75]  Takashi,et al.  RESOLUTION , 2009, Bring Now the Angels.

[76]  K. Kaestner,et al.  Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. , 2008, Genes & development.

[77]  Paola Oliveri,et al.  A protocol for unraveling gene regulatory networks , 2008, Nature Protocols.

[78]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[79]  R. Mirmira,et al.  Pdx1 and BETA2/NeuroD1 Participate in a Transcriptional Complex That Mediates Short-range DNA Looping at the Insulin Gene* , 2008, Journal of Biological Chemistry.

[80]  Ebba Kraemer,et al.  A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. , 2008, Developmental biology.

[81]  E. Davidson,et al.  Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. , 2007, Developmental biology.

[82]  E. Davidson,et al.  Sea urchin Forkhead gene family: phylogeny and embryonic expression. , 2006, Developmental biology.

[83]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[84]  Eric H Davidson,et al.  Hindgut specification and cell‐adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo , 2006, Development, growth & differentiation.

[85]  Yi Li,et al.  PCR-based accurate synthesis of long DNA sequences , 2006, Nature Protocols.

[86]  Diana Wang,et al.  Neuron‐specific expression of a synaptotagmin gene in the sea urchin Strongylocentrotus purpuratus , 2006, The Journal of comparative neurology.

[87]  H. Clevers,et al.  The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. , 2005, Diabetes.

[88]  H. Lehrach,et al.  On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo , 2004, Evolution & development.

[89]  M. Tomita,et al.  Position‐specific expression of Hox genes along the gastrointestinal tract , 2004, Congenital anomalies.

[90]  Eric H Davidson,et al.  Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. , 2003, Developmental biology.

[91]  T. Frayling,et al.  A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. , 2001, Human molecular genetics.

[92]  E. Davidson,et al.  Cis-regulation downstream of cell type specification: a single compact element controls the complex expression of the CyIIa gene in sea urchin embryos. , 1998, Development.

[93]  D. Duboule,et al.  Function of posterior HoxD genes in the morphogenesis of the anal sphincter. , 1996, Development.

[94]  H. R. Whiteley,et al.  Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: a three dimensional in situ hybridization analysis , 1992, Mechanisms of Development.

[95]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[96]  M. Arnone,et al.  ATAC-Seq for Assaying Chromatin Accessibility Protocol Using Echinoderm Embryos. , 2021, Methods in molecular biology.

[97]  V. Hinman,et al.  EchinoBase: Tools for Echinoderm Genome Analyses. , 2018, Methods in molecular biology.

[98]  M. Arnone,et al.  A Differential Transcriptomic Approach to Compare Target Genes of Homologous Transcription Factors in Echinoderm Species , 2016 .

[99]  Celina E. Juliano,et al.  Isolating specific embryonic cells of the sea urchin by FACS. , 2014, Methods in molecular biology.

[100]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[101]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[102]  E. Davidson,et al.  Regulation of spblimp1/krox1a, an alternatively transcribed isoform expressed in midgut and hindgut of the sea urchin gastrula. , 2007, Gene expression patterns : GEP.

[103]  M. Arnone,et al.  Using reporter genes to study cis-regulatory elements. , 2004, Methods in cell biology.

[104]  D. McClay Methods for embryo dissociation and analysis of cell adhesion. , 2004, Methods in cell biology.

[105]  J. Young Echinodermata , 1871, Transactions of the Glasgow Geological Society.