A fraction free Matrix Berlekamp/Massey algorithm

Abstract We describe a fraction free version of the Matrix Berlekamp/Massey algorithm. The algorithm computes a minimal matrix generator of linearly generated square matrix sequences in an integral domain. The algorithm performs all operations in the integral domain, so all divisions performed are exact. For scalar sequences, the matrix algorithm specializes to a different algorithm than the algorithm currently in the literature. This new scalar algorithm has smaller intermediate values than the known fraction free Berlekamp/Massey algorithm.

[1]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[2]  B. Dickinson,et al.  A minimal realization algorithm for matrix sequences , 1973, CDC 1973.

[3]  George Labahn,et al.  Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..

[4]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[5]  Anthony C. Hearn An improved non-modular polynomial GCD algorithm , 1972, SIGS.

[6]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[7]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[8]  Erich Kaltofen,et al.  Algorithms for computing the sparsest shifts of polynomials via the Berlekamp/Massey algorithm , 2002, ISSAC '02.

[9]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[10]  David J. Jeffrey,et al.  Fraction-free matrix factors: new forms for LU and QR factors , 2008, Frontiers of Computer Science in China.

[11]  P. Fatou Séries trigonométriques et séries de Taylor , 1906 .

[12]  Erich Kaltofen,et al.  On the matrix berlekamp-massey algorithm , 2013, TALG.

[13]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[14]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[15]  Peter R. Turner,et al.  Fraction-free algorithms for linear and polynomial equations , 1997, SIGS.

[16]  George Labahn,et al.  Fraction-free computation of matrix Padé systems , 1997, ISSAC.

[17]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[18]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[19]  W. S. Brown The Subresultant PRS Algorithm , 1978, TOMS.

[20]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.