A fraction free Matrix Berlekamp/Massey algorithm
暂无分享,去创建一个
[1] W. S. Brown. On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.
[2] B. Dickinson,et al. A minimal realization algorithm for matrix sequences , 1973, CDC 1973.
[3] George Labahn,et al. Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..
[4] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[5] Anthony C. Hearn. An improved non-modular polynomial GCD algorithm , 1972, SIGS.
[6] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[7] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[8] Erich Kaltofen,et al. Algorithms for computing the sparsest shifts of polynomials via the Berlekamp/Massey algorithm , 2002, ISSAC '02.
[9] Erich Kaltofen,et al. Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..
[10] David J. Jeffrey,et al. Fraction-free matrix factors: new forms for LU and QR factors , 2008, Frontiers of Computer Science in China.
[11] P. Fatou. Séries trigonométriques et séries de Taylor , 1906 .
[12] Erich Kaltofen,et al. On the matrix berlekamp-massey algorithm , 2013, TALG.
[13] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[14] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .
[15] Peter R. Turner,et al. Fraction-free algorithms for linear and polynomial equations , 1997, SIGS.
[16] George Labahn,et al. Fraction-free computation of matrix Padé systems , 1997, ISSAC.
[17] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[18] Jean Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.
[19] W. S. Brown. The Subresultant PRS Algorithm , 1978, TOMS.
[20] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.