The NASA Roadmap to Ocean Worlds

Abstract In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to “identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find.” The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists.

[1]  A. McEwen,et al.  Cassini imaging of Titan's high‐latitude lakes, clouds, and south‐polar surface changes , 2009 .

[2]  JOHN S. Lewis Satellites of the Outer Planets: Their Physical and Chemical Nature , 1971 .

[3]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[4]  J. Cooper,et al.  Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus , 2009 .

[5]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[6]  C. Sotin,et al.  Evolution of Icy Satellites , 2010 .

[7]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[8]  F. Nimmo,et al.  Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology , 2014 .

[9]  E. Gaidos,et al.  Planetary science: Tectonics and water on Europa , 2000, Nature.

[10]  D. Ehrenreich,et al.  Are extrasolar oceans common throughout the Galaxy , 2007, 0704.3024.

[11]  M. Zolotov,et al.  On the Chemical Composition of Europa's Icy Shell, Ocean, and Underlying Rocks , 2009 .

[12]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[13]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[14]  P. Glover,et al.  On the chemical composition of. , 1964 .

[15]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[16]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[17]  J. A. Álvarez-Gómez,et al.  Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies , 2007 .

[18]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[19]  Richard Greenberg Transport rates of radiolytic substances into Europa's ocean: implications for the potential origin and maintenance of life. , 2010, Astrobiology.

[20]  J. Goodman,et al.  Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds , 2012 .

[21]  R. H. Brown,et al.  The identification of liquid ethane in Titan’s Ontario Lacus , 2008, Nature.

[22]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.

[23]  T. Mashimo,et al.  Dynamic water loss of antigorite by impact process , 2015 .

[24]  D. Sasselov,et al.  THE INTERIOR DYNAMICS OF WATER PLANETS , 2010, 1001.2890.

[25]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[26]  R. Greeley,et al.  Locating potential biosignatures on Europa from surface geology observations. , 2003, Astrobiology.

[27]  Christopher T. Russell,et al.  Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment , 1999 .

[28]  James B. Garvin,et al.  Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report. , 2017 .

[29]  A. Mcnamara,et al.  Material transport across Europa's ice shell , 2015 .

[30]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[31]  Bruce A. Warren,et al.  A hydrographic section across the subtropical South Indian Ocean , 1993 .

[32]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[33]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[34]  M. Lilley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. , 2001, Nature.

[35]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[36]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[37]  C. Stern,et al.  Hydrothermal pyrite concretions from the Romanche trench (equatorial Atlantic): metallogenesis in oceanic fracture zones , 1976 .

[38]  Mary A. Voytek,et al.  The Ladder of Life Detection , 2018, Astrobiology.

[39]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[40]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[41]  David A. Williams,et al.  Cryovolcanism on Ceres , 2016, Science.

[42]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[43]  J. Wisdom Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .

[44]  Kenneth H. Nealson,et al.  Astrobiology and the Potential for Life on Europa , 2009 .

[45]  S. Vance,et al.  Oceanography of an Ice-Covered Moon , 2009 .

[46]  S. Charnoz,et al.  Constraints on Mimas’ interior from Cassini ISS libration measurements , 2014, Science.

[47]  B. Marsh,et al.  Constraining the thickness of Europa’s water–ice shell: Insights from tidal dissipation and conductive cooling , 2015 .

[48]  Randolph L. Kirk,et al.  Specular reflection on Titan: Liquids in Kraken Mare , 2010 .

[49]  John Bain,et al.  The new family , 1999 .

[50]  JOHN S. Lewis,et al.  The evolution of icy satellite interiors and surfaces , 1978 .

[51]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[52]  C. Sotin,et al.  Tides and Tidal Heating on Europa , 2009 .

[53]  Christopher R. German,et al.  Pathways for abiotic organic synthesis at submarine hydrothermal fields , 2015, Proceedings of the National Academy of Sciences.

[54]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[55]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[56]  J. Shirley,et al.  Europa’s ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side–trailing side boundary , 2010 .

[57]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[58]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[59]  Yongyun Hu,et al.  Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars , 2013, Proceedings of the National Academy of Sciences.

[60]  E. Baker,et al.  Where are the undiscovered hydrothermal vents on oceanic spreading ridges , 2015 .

[61]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[62]  David J. Stevenson,et al.  Coupled Orbital and Thermal Evolution of Ganymede , 1997 .

[63]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[64]  J. Marotzke,et al.  Geothermal heating and its influence on the meridional overturning circulation , 2001 .

[65]  K. Hand,et al.  Europa's surface color suggests an ocean rich with sodium chloride , 2015 .

[66]  J. B. Plescia,et al.  The geology of Ganymede , 1979 .

[67]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[68]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[69]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[70]  G. W. Patterson,et al.  Active formation of ‘chaos terrain’ over shallow subsurface water on Europa , 2011, Nature.

[71]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[72]  J. Wisdom,et al.  Tidal evolution of Mimas, Enceladus, and Dione , 2007 .

[73]  J. B. Dalton,et al.  Europa’s Surface Composition , 2009 .

[74]  H. Melosh,et al.  The temperature of Europa's subsurface water ocean , 2004 .

[75]  Robert T. Pappalardo,et al.  The origin of domes on Europa: The role of thermally induced compositional diapirism , 2004 .

[76]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[77]  B. Sherwood Strategic map for exploring the ocean-world Enceladus , 2015 .

[78]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  E. Tajika Snowball Planets as a Possible Type of Water-Rich Terrestrial Planet in Extrasolar Planetary Systems , 2008 .

[80]  H. Zebker,et al.  Smoothness of Titan's Ontario Lacus: Constraints from Cassini RADAR specular reflection data , 2009 .