Spin-Electric Coupling in Lead Halide Perovskites.

Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH_{3}NH_{3}PbBr_{3} in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k·p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.

[1]  Bradley Dirks,et al.  The minimal exponent and k-rationality for local complete intersections , 2022, Journal de l’École polytechnique — Mathématiques.

[2]  Ayan A. Zhumekenov,et al.  Effective model for studying optical properties of lead halide perovskites , 2022, Physical Review B.

[3]  Zhi-Gang Yu,et al.  Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy , 2022, Nature communications.

[4]  F. So,et al.  High-temperature superfluorescence in methyl ammonium lead iodide , 2020, Nature Photonics.

[5]  J. Khurgin,et al.  Nonlinear optical properties of halide perovskites and their applications , 2020 .

[6]  A. Sekine,et al.  Axion electrodynamics in topological materials , 2020, Journal of Applied Physics.

[7]  Florian Thöle,et al.  Concepts from the linear magnetoelectric effect that might be useful for antiferromagnetic spintronics , 2020, Journal of Applied Physics.

[8]  Wenxin Mao,et al.  Solution‐Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites , 2020, Advanced science.

[9]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[10]  Chongjun He,et al.  Refractive Index Dispersion of Organic–Inorganic Hybrid Halide Perovskite CH3NH3PbX3 (X═Cl, Br, I) Single Crystals , 2019, Crystal Research and Technology.

[11]  P. Schwerdtfeger,et al.  2018 Table of static dipole polarizabilities of the neutral elements in the periodic table* , 2018, Molecular Physics.

[12]  A. Ferrando,et al.  Toward Metal Halide Perovskite Nonlinear Photonics. , 2018, The journal of physical chemistry letters.

[13]  C. H. Ng,et al.  Tunable Open Circuit Voltage by Engineering Inorganic Cesium Lead Bromide/Iodide Perovskite Solar Cells , 2018, Scientific Reports.

[14]  M. Bonn,et al.  Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites , 2017, Nature Communications.

[15]  J. Michopoulos,et al.  Bright triplet excitons in caesium lead halide perovskites , 2017, Nature.

[16]  D. Vanderbilt,et al.  Microscopic theory of spin toroidization in periodic crystals , 2017, 1706.03685.

[17]  Thibaud Etienne,et al.  Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. , 2017, The journal of physical chemistry letters.

[18]  C. Brabec,et al.  Giant Rashba Splitting in CH_{3}NH_{3}PbBr_{3} Organic-Inorganic Perovskite. , 2016, Physical review letters.

[19]  Anders Hagfeldt,et al.  Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells , 2016 .

[20]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[21]  Aron Walsh,et al.  Experimental and theoretical optical properties of methylammonium lead halide perovskites. , 2016, Nanoscale.

[22]  L. Tan,et al.  Rashba Spin−Orbit Coupling Enhanced Carrier Lifetime in CH3NH3PbI3 , 2015 .

[23]  E. Garnett,et al.  Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite , 2016 .

[24]  M. Saidaminov,et al.  Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. , 2015, Chemical communications.

[25]  M. Green,et al.  Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[26]  L. Tan,et al.  Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH₃NH₃PbI₃. , 2015, Nano letters.

[27]  W. Sigle,et al.  High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping , 2015, Nature Communications.

[28]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[29]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[30]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[31]  A. Freeman,et al.  Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites , 2014, Proceedings of the National Academy of Sciences.

[32]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[33]  L. Nordström,et al.  Monopole-based formalism for the diagonal magnetoelectric response , 2013 .

[34]  A. Freeman,et al.  Topological insulator phase in halide perovskite structures , 2012 .

[35]  Volker Heine,et al.  Group Theory: Application to the Physics of Condensed Matter , 2008 .

[36]  Nicola A. Spaldin,et al.  The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect , 2008 .

[37]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[38]  K. Asai,et al.  Electronic structures of lead iodide based low-dimensional crystals , 2003 .

[39]  Hagan,et al.  Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. , 1990, Physical review letters.

[40]  V. M. Dubovik,et al.  Toroid moments in electrodynamics and solid-state physics , 1990 .

[41]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[42]  E. Stern,et al.  Faraday Effect in Solids , 1965 .

[43]  K. W. Meissner,et al.  Optics. Lectures on Theoretical Physics, Vol. IV , 1955 .

[44]  A. Donald,et al.  Supplemental Material to , 2013 .

[45]  E. Kane Chapter 3 The k •p Method , 1966 .