The Transport Oka-Grauert Principle for Simple Surfaces

This article considers the attenuated transport equation on Riemannian surfaces in the light of a novel twistor correspondence under which matrix attenuations correspond to holomorphic vector bundles on a complex surface. The main result is a transport version of the classical Oka-Grauert principle and states that the twistor space of a simple surface supports no nontrivial holomorphic vector bundles. This solves an open problem on the existence of matrix holomorphic integrating factors on simple surfaces and is applied to give a range characterisation for the non-Abelian X-ray transform. The main theorem is proved using the inverse function theorem of Nash and Moser and the required tame estimates are obtained from recent results on the injectivity of attenuated X-ray transforms and microlocal analysis of the associated normal operators.

[1]  Richard Nickl,et al.  Statistical guarantees for Bayesian uncertainty quantification in nonlinear inverse problems with Gaussian process priors , 2021, The Annals of Statistics.

[2]  V. Guillemin,et al.  Some inverse spectral results for negatively curved 2-manifolds , 1980 .

[3]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[4]  R. Novikov Non-abelian Radon transform and its applications , 2019 .

[5]  R. Novikov ON DETERMINATION OF A GAUGE FIELD ON ℝd FROM ITS NON-ABELIAN RADON TRANSFORM ALONG ORIENTED STRAIGHT LINES , 2002, Journal of the Institute of Mathematics of Jussieu.

[6]  T. Mettler Metrisability of projective surfaces and pseudo-holomorphic curves , 2020, Mathematische Zeitschrift.

[7]  Zoll Manifolds and Complex Surfaces , 2002, math/0211021.

[8]  F. Forstnerič The homotopy principle in complex analysis: a survey , 2003, math/0301067.

[9]  J. Rawnsley,et al.  Twistor spaces , 1985 .

[10]  Gunther Uhlmann,et al.  The inverse problem for the local geodesic ray transform , 2012, 1210.2084.

[11]  Gareth Ainsworth,et al.  On the range of the attenuated magnetic ray transform for connections and Higgs fields , 2013, 1311.4582.

[12]  R. Nickl,et al.  Consistent Inversion of Noisy Non‐Abelian X‐Ray Transforms , 2019, Communications on Pure and Applied Mathematics.

[13]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[14]  V. Sharafutdinov On the inverse problem of determining a connection on a vector bundle , 2000 .

[15]  M. Salo,et al.  The geodesic X-ray transform with matrix weights , 2016, American Journal of Mathematics.

[16]  R. Narasimhan,et al.  Lectures on the theory of functions of several complex variables , 1958 .

[17]  F. Forstnerič Stein Manifolds and Holomorphic Mappings , 2011 .

[18]  J. Thorpe,et al.  Lecture Notes on Elementary Topology and Geometry. , 1967 .

[19]  M. Salo,et al.  The non-Abelian X-ray transform on surfaces , 2020, 2006.02257.

[20]  S. Donaldson Geometry of four-manifolds , 1990 .

[21]  G. Uhlmann,et al.  Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge , 2017, Annals of Mathematics.

[22]  M. Salo,et al.  The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.

[23]  G. Uhlmann,et al.  Inversion formulas and range characterizations for the attenuated geodesic ray transform , 2016, 1609.04361.

[24]  Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials , 2018, Nature Communications.

[25]  J. Leiterer Holomorphic Vector Bundles and the Oka-Grauert Principle , 1990 .

[26]  David V. Finch,et al.  The x-ray transform for a non-Abelian connection in two dimensions , 2001 .

[27]  R. T. Seeley,et al.  Extension of ^{∞} functions defined in a half space , 1964 .

[28]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[29]  N. Hitchin Complex manifolds and Einstein’s equations , 1982 .

[30]  T. Mettler,et al.  Convex projective surfaces with compatible Weyl connection are hyperbolic , 2018, 1804.04616.

[31]  William R B Lionheart,et al.  Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields , 2017, Scientific Reports.

[32]  M. Salo,et al.  On the Range of the Attenuated Ray Transform for Unitary Connections , 2013, 1302.4880.

[33]  S. Schmidt,et al.  Polarimetric neutron tomography of magnetic fields: uniqueness of solution and reconstruction , 2019, Inverse Problems.

[34]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  Roger Penrose,et al.  The twistor programme , 1977 .

[36]  L. Mason,et al.  Integrability, Self-Duality, and Twistor Theory , 1997 .

[37]  H. Grauert Analytische Faserungen über holomorph-vollständigen Räumen , 1958 .

[38]  Richard Nickl,et al.  On log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems , 2021, 2105.07835.

[39]  M. Salo,et al.  The attenuated ray transform on simple surfaces , 2010, 1004.2323.

[40]  L. Mason Global anti-self-dual Yang-Mills fields in split signature and their scattering , 2005 .

[41]  Richard S. Hamilton,et al.  The inverse function theorem of Nash and Moser , 1982 .