Belief revision for adaptive information retrieval

Applying Belief Revision logic to model adaptive information retrieval is appealing since it provides a rigorous theoretical foundation to model partiality and uncertainty inherent in any information retrieval (IR) processes. In particular, a retrieval context can be formalised as a belief set and the formalised context is used to disambiguate vague user queries. Belief revision logic also provides a robust computational mechanism to revise an IR system's beliefs about the users' changing information needs. In addition, information flow is proposed as a text mining method to automatically acquire the initial IR contexts. The advantage of a belief-based IRsystem is that its IR behaviour is more predictable and explanatory. However, computational efficiency is often a concern when the belief revision formalisms are applied to large real-life applications. This paper describes our belief-based adaptive IR system which is underpinned by an efficient belief revision mechanism. Our initial experiments show that the belief-based symbolic IR model is more effective than a classical quantitative IR model. To our best knowledge, this is the first successful empirical evaluation of a logic-based IR model based on large IR benchmark collections.

[1]  Mary-Anne Williams Anytime Belief Revision , 1997, IJCAI.

[2]  C. J. van Rijsbergen,et al.  A Non-Classical Logic for Information Retrieval , 1997, Comput. J..

[3]  Kam-Fai Wong,et al.  Application of aboutness to functional benchmarking in information retrieval , 2001, TOIS.

[4]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[5]  Toshiki Kindo,et al.  Adaptive Personal Information Filtering System that Organizes Personal Profiles Automatically , 1997, IJCAI.

[6]  Mounia Lalmas,et al.  The use of logic in information retrieval modelling , 1998, The Knowledge Engineering Review.

[7]  Kam-Fai Wong,et al.  Aboutness from a commonsense perspective , 2000, J. Am. Soc. Inf. Sci..

[8]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[9]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[10]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[11]  David A. Hull The TREC-7 Filtering Track: Description and Analysis , 1998, Text Retrieval Conference.

[12]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[13]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[14]  David E. Losada,et al.  Using a belief revision operator for document ranking in extended Boolean models , 1999, SIGIR '99.

[15]  Jürg Kohlas,et al.  Algorithms for uncertainty and defeasible reasoning , 2000 .

[16]  Peter Bruza,et al.  Towards context sensitive information inference , 2003, J. Assoc. Inf. Sci. Technol..

[17]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[18]  Jian-Yun Nie An outline of a general model for information retrieval systems , 1988, SIGIR '88.

[19]  Mary-Anne Williams,et al.  Iterated Theory Base Change: A Computational Model , 1995, IJCAI.

[20]  Jian-Yun Nie,et al.  Information Retrieval as Counterfactual , 1995, Comput. J..

[21]  Peter Bruza,et al.  Investigating aboutness axioms using information fields , 1994, SIGIR '94.

[22]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[23]  Peter Gärdenfors,et al.  Revisions of Knowledge Systems Using Epistemic Entrenchment , 1988, TARK.

[24]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[25]  Fabio Crestani,et al.  Logical Imaging and Probabilistic Information Retrieval , 1998 .

[26]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[27]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[28]  Daphne Koller,et al.  Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.

[29]  Steven Reece,et al.  Modelling information retrieval agents with belief revision , 1994, SIGIR '94.