Efficiently finding low-sum copies of spanning forests in zero-sum complete graphs via conditional expectation

For a fixed positive ǫ, we show the existence of a constant Cǫ with the following property: Given a ±1-edge-labeling c : E(Kn) → {−1, 1} of the complete graph Kn with c(E(Kn)) = 0, and a spanning forest F of Kn of maximum degree ∆, one can determine in polynomial time an isomorphic copy F ′ of F in Kn with |c(E(F ))| ≤ ( 3 4 + ǫ ) ∆+ Cǫ. Our approach is based on the method of conditional expectation.

[1]  Dieter Rautenbach,et al.  Zero-sum copies of spanning forests in zero-sum complete graphs , 2021 .

[2]  Paul Erdös,et al.  On a Combinatorial Game , 1973, J. Comb. Theory A.

[3]  Dieter Rautenbach,et al.  Low Weight Perfect Matchings , 2020, Electron. J. Comb..

[4]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[5]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[6]  Teeradej Kittipassorn,et al.  On the existence of zero-sum perfect matchings of complete graphs , 2020, Ars Math. Contemp..

[7]  J. Lauri,et al.  On Zero-Sum Spanning Trees and Zero-Sum Connectivity , 2020, Electron. J. Comb..

[8]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.