qPCF: A Language for Quantum Circuit Computations

We propose qPCF, a functional language able to define and manipulate quantum circuits in an easy and intuitive way. qPCF follows the tradition of “quantum data & classical control” languages, inspired to the QRAM model. Ideally, qPCF computes finite circuit descriptions which are offloaded to a quantum co-processor (i.e. a quantum device) for the execution. qPCF extends \(\text {PCF}\) with a new kind of datatype: quantum circuits. The typing of qPCF is quite different from the mainstream of “quantum data & classical control” languages that involves linear/exponential modalities. qPCF uses a simple form of dependent types to manage circuits and an implicit form of monad to manage quantum states via a destructive-measurement operator.

[1]  Margherita Zorzi,et al.  Quantum State Transformations and Branching Distributed Temporal Logic - (Invited Paper) , 2014, WoLLIC.

[2]  Ugo Dal Lago,et al.  Quantum implicit computational complexity , 2010, Theor. Comput. Sci..

[3]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[4]  Mingsheng Ying,et al.  Foundations of Quantum Programming , 2016 .

[5]  Luca Roversi,et al.  A Class of Reversible Primitive Recursive Functions , 2016, ICTCS.

[6]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[7]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[8]  Margherita Zorzi,et al.  On quantum lambda calculi: a foundational perspective , 2014, Mathematical Structures in Computer Science.

[9]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[10]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Ugo Dal Lago,et al.  Probabilistic operational semantics for the lambda calculus , 2011, RAIRO Theor. Informatics Appl..

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[13]  Marco Gaboardi,et al.  Linearity and PCF: a semantic insight! , 2011, ICFP '11.

[14]  Neil J. Ross,et al.  ALGEBRAIC AND LOGICAL METHODS IN QUANTUM COMPUTATION , 2015, 1510.02198.

[15]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[16]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[17]  Ugo Dal Lago,et al.  On a measurement-free quantum lambda calculus with classical control , 2009, Math. Struct. Comput. Sci..

[18]  Steven Roman Advanced Linear Algebra , 1992 .

[19]  Luca Viganò,et al.  A branching distributed temporal logic for reasoning about entanglement-free quantum state transformations , 2017, Inf. Comput..

[20]  Elaine Pimentel,et al.  An Operational Characterization of Strong Normalization , 2006, FoSSaCS.

[21]  Jennifer Paykin,et al.  QWIRE: a core language for quantum circuits , 2017, POPL.

[22]  Amy P. Felty,et al.  Formalization of Metatheory of the Quipper Quantum Programming Language in a Linear Logic , 2019, Journal of Automated Reasoning.

[23]  Luca Viganò,et al.  Modal Deduction Systems for Quantum State Transformations , 2011, J. Multiple Valued Log. Soft Comput..

[24]  Marco Gaboardi,et al.  On the reification of semantic linearity , 2014, Mathematical Structures in Computer Science.

[25]  Luca Viganò,et al.  A Qualitative Modal Representation of Quantum Register Transformations , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[26]  Federico Aschieri,et al.  Non-determinism, Non-termination and the Strong Normalization of System T , 2013, TLCA.

[27]  Benoît Valiron,et al.  A lambda calculus for quantum computation with classical control , 2006, Math. Struct. Comput. Sci..

[28]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[29]  Ugo Dal Lago,et al.  Confluence Results for a Quantum Lambda Calculus with Measurements , 2011, Electron. Notes Theor. Comput. Sci..

[30]  Harumichi Nishimura,et al.  Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families , 2009, Quantum Inf. Process..

[31]  Jonathan M. Smith,et al.  Programming the quantum future , 2015, Commun. ACM.

[32]  Gilles Dowek,et al.  Linear-algebraic lambda-calculus: higher-order, encodings, and confluence , 2008, RTA.

[33]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[34]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[35]  Jonathan Grattage An Overview of QML With a Concrete Implementation in Haskell , 2011, Electron. Notes Theor. Comput. Sci..