Montage: Combine Frames with Movement Continuity for Realtime Multi-User Tracking

In this work, we design and develop <italic>Montage</italic> for real-time multi-user formation tracking and localization by off-the-shelf smartphones. <italic>Montage</italic> achieves submeter-level tracking accuracy by integrating temporal and spatial constraints from user <italic>movement vector</italic> estimation and distance measuring. In <italic>Montage</italic>, we designed a suite of novel techniques to surmount a variety of challenges in real-time tracking, without infrastructure and fingerprints, and without any a priori user-specific (e.g., stride-length and phone-placement) or site-specific (e.g., digitalized map) knowledge: (1) a coded audio tone to support multi-user tracking with minimal latency, in the presence of high noise, multi-path effect, and Doppler Shift, (2) an innovative stride-length and walking direction estimation method without a priori knowledge of user and site, and (3) a vector-based multi-user tracking scheme which connects successive localization snapshots to refine users’ locations and generate continuous moving traces. We implemented, deployed, and evaluated <italic>Montage </italic> in both outdoor and indoor environment. Our experimental results (847 traces from 15 users) show that the stride-length estimated by <italic>Montage</italic> over all users has error within <inline-formula> <tex-math notation="LaTeX">$9\text{\,cm}$</tex-math><alternatives><inline-graphic xlink:href="zhang-ieq1-2577586.gif"/> </alternatives></inline-formula>, and the moving-direction estimated by <italic>Montage</italic> is within <inline-formula><tex-math notation="LaTeX">$20$</tex-math><alternatives> <inline-graphic xlink:href="zhang-ieq2-2577586.gif"/></alternatives></inline-formula> degrees. For real-time tracking, <italic>Montage</italic> provides meter-second-level formation tracking accuracy with off-the-shelf mobile phones.

[1]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[2]  Moustafa Youssef,et al.  The Horus location determination system , 2008 .

[3]  Mo Li,et al.  Travi-Navi: self-deployable indoor navigation system , 2014, MobiCom.

[4]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[5]  Ig-Jae Kim,et al.  Indoor location sensing using geo-magnetism , 2011, MobiSys '11.

[6]  Venkata N. Padmanabhan,et al.  Centaur: locating devices in an office environment , 2012, Mobicom '12.

[7]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[8]  Seth J. Teller,et al.  Growing an organic indoor location system , 2010, MobiSys '10.

[9]  Patrick Robertson,et al.  Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors , 2009, UbiComp.

[10]  Lucila Patino-Studencki,et al.  Comparison and evaluation of acceleration based step length estimators for handheld devices , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[11]  Shaojie Tang,et al.  Electronic frog eye: Counting crowd using WiFi , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[12]  Yunhao Liu,et al.  Swadloon: Direction Finding and Indoor Localization Using Acoustic Signal by Shaking Smartphones , 2015, IEEE Transactions on Mobile Computing.

[13]  Robert Harle,et al.  A Survey of Indoor Inertial Positioning Systems for Pedestrians , 2013, IEEE Communications Surveys & Tutorials.

[14]  Yunhao Liu,et al.  Localization of Wireless Sensor Networks in the Wild: Pursuit of Ranging Quality , 2013, IEEE/ACM Transactions on Networking.

[15]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization via ambience fingerprinting , 2009, MobiCom '09.

[16]  Peter A. Dinda,et al.  Indoor localization without infrastructure using the acoustic background spectrum , 2011, MobiSys '11.

[17]  Eyal de Lara,et al.  GSM indoor localization , 2007, Pervasive Mob. Comput..

[18]  Mun Choon Chan,et al.  Low cost crowd counting using audio tones , 2012, SenSys '12.

[19]  Jianxin Wu,et al.  GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation , 2015, IEEE Transactions on Mobile Computing.

[20]  Myong-Soon Park,et al.  An indoor localization mechanism using active RFID tag , 2006, IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06).

[21]  Christian Esposito,et al.  Calibrating Indoor Positioning Systems with Low Efforts , 2014, IEEE Transactions on Mobile Computing.

[22]  Shaojie Tang,et al.  Communicating Is Crowdsourcing: Wi-Fi Indoor Localization with CSI-Based Speed Estimation , 2013, Journal of Computer Science and Technology.

[23]  Moustafa Youssef,et al.  No need to war-drive: unsupervised indoor localization , 2012, MobiSys '12.

[24]  Xiang-Yang Li,et al.  SmartLoc: push the limit of the inertial sensor based metropolitan localization using smartphone , 2013, MobiCom.

[25]  Mike Hazas,et al.  An efficient CDMA core for indoor acoustic position sensing , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[26]  G. Niezgoda,et al.  Tracking acoustic transmitters by code division multiple access (CDMA)-based telemetry , 2002, Hydrobiologia.

[27]  Alec Wolman,et al.  Virtual Compass: Relative Positioning to Sense Mobile Social Interactions , 2010, Pervasive.

[28]  Yunhao Liu,et al.  WILL: Wireless indoor localization without site survey , 2012, 2012 Proceedings IEEE INFOCOM.

[29]  Moustafa Youssef,et al.  UPTIME: Ubiquitous pedestrian tracking using mobile phones , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[30]  Prabal Dutta,et al.  Luxapose: indoor positioning with mobile phones and visible light , 2014, MobiCom.

[31]  Guobin Shen,et al.  BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices , 2007, SenSys '07.

[32]  Yunhao Liu,et al.  PerLoc: Enabling Infrastructure-Free Indoor Localization with Perspective Projection , 2015, 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems.

[33]  Yunhao Liu,et al.  Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[34]  Mikkel Baun Kjærgaard,et al.  Robust and Energy-Efficient Trajectory Tracking for Mobile Devices , 2015, IEEE Transactions on Mobile Computing.

[35]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[36]  Oscar Mayora-Ibarra,et al.  Tuning to your position: FM radio based indoor localization with spontaneous recalibration , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[37]  Yunhao Liu,et al.  Locating in fingerprint space: wireless indoor localization with little human intervention , 2012, Mobicom '12.

[38]  Jie Yang,et al.  Accurate WiFi Based Localization for Smartphones Using Peer Assistance , 2014, IEEE Transactions on Mobile Computing.

[39]  David Chu,et al.  On the feasibility of real-time phone-to-phone 3D localization , 2011, SenSys.

[40]  Yunhao Liu,et al.  It starts with iGaze: visual attention driven networking with smart glasses , 2014, MobiCom.

[41]  Lawrence Wai-Choong Wong,et al.  Indoor localization with channel impulse response based fingerprint and nonparametric regression , 2010, IEEE Transactions on Wireless Communications.

[42]  Yunhao Liu,et al.  Beyond Trilateration: On the Localizability of Wireless Ad Hoc Networks , 2009, IEEE/ACM Transactions on Networking.

[43]  Steven J. Cooke,et al.  Use of CDMA Acoustic Telemetry to Document 3-D Positions of Fish: Relevance to the Design and Monitoring of Aquatic Protected Areas , 2005 .

[44]  Yunhao Liu,et al.  Smartphones Based Crowdsourcing for Indoor Localization , 2015, IEEE Transactions on Mobile Computing.

[45]  Jie Yang,et al.  Push the limit of WiFi based localization for smartphones , 2012, Mobicom '12.

[46]  Qian Zhang,et al.  Adometer: Push the Limit of Pedestrian Indoor Localization through Cooperation , 2014, IEEE Transactions on Mobile Computing.