SMOS Semi-Empirical Ocean Forward Model Adjustment

A prerequisite for the successful retrieval of geophysical parameters from remote sensing measurements is the development of an accurate forward model. The European Space Agency Soil Moisture and Ocean Salinity (SMOS), carrying onboard an L-band interferometric radiometer (Microwave Interferometric Radiometer using Aperture Synthesis), was launched on November 2009. Due to the lack of L-band passive ocean measurements from space, several prelaunch forward models were developed and initially used in the SMOS ocean salinity operational processor. In this paper, an update of the prelaunch semi-empirical forward model is presented, using for the first time, real SMOS data. In particular, the ocean surface emissivity modulation at L-band due to rough sea surface is reviewed and reanalyzed. A new model definition is provided with the help of a simple neural network. The improvement is quantified in terms of retrieved salinity accuracy compared with the climatology and concerns essentially the range of wind speeds higher than 12 m·s-1.

[1]  Simon Yueh,et al.  Sea surface salinity from space: Science goals and measurement approach , 2003 .

[2]  Paul Spurgeon,et al.  Ocean salinity retrieval approaches for the SMOS satellite , 2010 .

[3]  Min Zhang,et al.  Theoretical study of the small slope approximation for ocean polarimetric thermal emission , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Sébastien Guimbard Interprétation et modélisation de mesures à distance de la surface marine dans le domaine micro−onde , 2010 .

[5]  R. Kwok,et al.  Polarimetric scattering and emission properties of targets with reflection symmetry , 1994 .

[6]  Adriano Camps,et al.  SMOS' brightness temperatures validation: First results after the commisioning phase , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[7]  A. Stogryn,et al.  The apparent temperature of the sea at microwave frequencies , 1967 .

[8]  Yasunori Sasaki,et al.  The Dependence of Sea-Surface Microwave Emission on Wind Speed, Frequency, Incidence Angle, and Polarzation over the Frequency Range from 1 to 40 GHz , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[9]  A. Stogryn,et al.  The emissivity of sea foam at microwave frequencies , 1971 .

[10]  James P. Hollinger,et al.  Passive Microwave Measurements of Sea Surface Roughness , 1971 .

[11]  Adriano Camps,et al.  A new empirical model of sea surface microwave emissivity for salinity remote sensing , 2004 .

[12]  Philippe Waldteufel,et al.  About the effects of instrument errors in interferometric radiometry , 2003 .

[13]  Luis Enrique,et al.  The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jacqueline Boutin,et al.  Influence of sea surface emissivity model parameters at L-band for the estimation of salinity , 2002 .

[15]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[16]  Robert M. Lerner,et al.  Analysis of 1.4 GHz Radiometric measurements from Skylab , 1977 .

[17]  James P. Hollinger Passive microwave measurements of the sea surface , 1970 .

[18]  Eric Anterrieu,et al.  Reduction of the Reconstruction Bias in Synthetic Aperture Imaging Radiometry , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[19]  V. Irisov Small-slope expansion for thermal and reflected radiation from a rough surface , 1997 .

[20]  Leung Tsang,et al.  Asymptotic solution for the reflectivity of a very rough surface , 1980 .

[21]  Adriano Camps,et al.  SMOS measurements preliminary validation against modeled brightness temperatures and external-source salinity data , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[23]  Jacqueline Boutin,et al.  Issues concerning the sea emissivity modeling at L band for retrieving surface salinity , 2003 .

[24]  Gary S. E. Lagerloef,et al.  Sea Surface Salinity: The Next Remote Sensing Challenge , 1995 .

[25]  Bertrand Chapron,et al.  A two-parameter wind speed algorithm for Ku-band altimeters , 2002 .

[26]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[27]  S. Durden,et al.  A physical radar cross-section model for a wind-driven sea with swell , 1985, IEEE Journal of Oceanic Engineering.

[28]  H. A. Yueh,et al.  Scattering of electromagnetic waves from a periodic surface with random roughness , 1988 .

[29]  M. J. Van Melle,et al.  Microwave radiometric observations of simulated sea surface conditions , 1973 .

[30]  David G. Long,et al.  Wind speed effect on L-band brightness temperature inferred from EuroSTARRS and WISE 2001 field experiments , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Adriano Camps,et al.  Characterization of the SMOS Instrumental Error Pattern Correction Over the Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[32]  Simon Yueh,et al.  Passive and Active L-Band Microwave Observations and Modeling of Ocean Surface Winds , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Simon Yueh,et al.  Polarimetric brightness temperatures of sea surfaces measured with aircraft K- and Ka-band radiometers , 1997, IEEE Trans. Geosci. Remote. Sens..

[34]  Martin T. Hagan,et al.  Neural network design , 1995 .

[35]  Manuel Martín-Neira,et al.  Minimization of Image Distortion in SMOS Brightness Temperature Maps Over the Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[36]  P. Smith The emissivity of sea foam at 19 and 37 GHz , 1988 .

[37]  William J. Webster,et al.  Spectral characteristics of the microwave emission from a wind-driven foam-covered sea , 1976 .

[38]  Bertrand Chapron,et al.  Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves , 1999 .

[39]  Bertrand Chapron,et al.  A model of sea-foam thickness distribution for passive microwave remote sensing applications , 2003 .

[40]  C. T. Swift,et al.  Microwave radiometer measurements of the Cape Cod Canal , 1974 .

[41]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[42]  C. Cox Slopes of the sea surface deduced from photographs of sun glitter , 1956 .

[43]  Halbert White,et al.  Artificial Neural Networks: Approximation and Learning Theory , 1992 .