Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

Structured noncoding RNAs underlie fundamental cellular processes, but determining their three-dimensional structures remains challenging. We demonstrate that integrating 1H NMR chemical shift data with Rosetta de novo modeling can be used to consistently determine high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 'blind' targets, chemical-shift Rosetta for RNA (CS-Rosetta-RNA) recovered experimental structures with high accuracy (0.6–2.0 Å all-heavy-atom r.m.s. deviation) in 18 cases.

[1]  C. Giessner-Prettre,et al.  Parameters for the calculation of the ring current and atomic magnetic anisotropy contributions to magnetic shielding constants: Nucleic acid bases and intercalating agents , 1981 .

[2]  B. Pullman,et al.  Quantum mechanical calculations of NMR chemical shifts in nucleic acids , 1987, Quarterly Reviews of Biophysics.

[3]  Raymond F. Gesteland,et al.  Life Before DNA. (Book Reviews: The RNA World. The Nature of Modern RNA Suggests a Prebiotic RNA World.) , 1993 .

[4]  D. Case Calibration of ring-current effects in proteins and nucleic acids , 1995, Journal of biomolecular NMR.

[5]  J. Karn,et al.  Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. , 1996, Nucleic acids research.

[6]  P. Moore,et al.  On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. , 1997, Journal of molecular biology.

[7]  D. Turner,et al.  Solution structure of (rGGCAGGCC)2 by two-dimensional NMR and the iterative relaxation matrix approach. , 1996, Biochemistry.

[8]  S. Wijmenga,et al.  Analysis of 1H chemical shifts in DNA: Assessment of the reliability of 1H chemical shift calculations for use in structure refinement , 1997, Journal of biomolecular NMR.

[9]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[11]  N. Delihas The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA. Raymond F. Gesteland , Thomas R. Cech , John F. Atkins , 1999 .

[12]  Peter Walter,et al.  Structure of the most conserved internal loop in SRP RNA , 1999, Nature Structural Biology.

[13]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[14]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[15]  T. Sixma,et al.  Crystal structure of the ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. , 2000, Structure.

[16]  D. Turner,et al.  NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs. , 2000, Biochemistry.

[17]  A. Serganov,et al.  The crystal structure of UUCG tetraloop. , 2000, Journal of molecular biology.

[18]  P. Rossi,et al.  Dependence of 13C NMR chemical shifts on conformations of rna nucleosides and nucleotides. , 2001, Journal of magnetic resonance.

[19]  S. Wijmenga,et al.  Prediction of proton chemical shifts in RNA – Their use in structure refinement and validation , 2001, Journal of biomolecular NMR.

[20]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[21]  Structural characterization of a six-nucleotide RNA hairpin loop found in Escherichia coli, r(UUAAGU). , 2001, Biochemistry.

[22]  H. Schwalbe,et al.  NMR Spectroscopy of RNA , 2003, Chembiochem : a European journal of chemical biology.

[23]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[24]  M. Sundaralingam,et al.  Structure of an RNA dodecamer containing a fragment from SRP domain IV of Escherichia coli. , 2003, Acta crystallographica. Section D, Biological crystallography.

[25]  Joseph D Puglisi,et al.  Structure of HCV IRES domain II determined by NMR , 2003, Nature Structural Biology.

[26]  L. Scott,et al.  RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. , 2005, Journal of molecular biology.

[27]  Gert Vriend,et al.  Traditional Biomolecular Structure Determination by NMR Spectroscopy Allows for Major Errors , 2005, PLoS Comput. Biol..

[28]  S. Wijmenga,et al.  Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals , 2007, Nucleic acids research.

[29]  Michele Vendruscolo,et al.  Protein structure determination from NMR chemical shifts , 2007, Proceedings of the National Academy of Sciences.

[30]  D. Turner,et al.  NMR reveals the absence of hydrogen bonding in adjacent UU and AG mismatches in an isolated internal loop from ribosomal RNA. , 2007, Biochemistry.

[31]  Teresa Carlomagno,et al.  13C-detection in RNA bases: revealing structure-chemical shift relationships. , 2007, Journal of the American Chemical Society.

[32]  P. A. Thompson,et al.  Electronic Reprint Biological Crystallography Structure of Hepatitis C Virus Ires Subdomain Iia Biological Crystallography Structure of Hepatitis C Virus Ires Subdomain Iia , 2022 .

[33]  L. Scott,et al.  RNA structure determination by NMR. , 2008, Methods in molecular biology.

[34]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[35]  Craig L. Zirbel,et al.  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures , 2007, Journal of mathematical biology.

[36]  Frederic A. Fellouse,et al.  Synthetic antibodies for specific recognition and crystallization of structured RNA , 2008, Proceedings of the National Academy of Sciences.

[37]  Oliver F. Lange,et al.  Consistent blind protein structure generation from NMR chemical shift data , 2008, Proceedings of the National Academy of Sciences.

[38]  O. Ohlenschläger,et al.  Conformational signatures of 13C chemical shifts in RNA ribose , 2008, Journal of biomolecular NMR.

[39]  H. Schwalbe,et al.  High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA , 2009, Nucleic acids research.

[40]  D. Case,et al.  Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H–13C residual dipolar coupling on refinement , 2010, Journal of biomolecular NMR.

[41]  D. Turner,et al.  RNA Internal Loops with Tandem AG Pairs: The Structure of the 5′GAGU/3′UGAG Loop Can Be Dramatically Different from Others, Including 5′AAGU/3′UGAA† , 2010, Biochemistry.

[42]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[43]  Michael Sarver,et al.  FR 3 D : finding local and composite recurrent structural motifs in RNA 3 D structures , 2010 .

[44]  Rhiju Das,et al.  An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling , 2011, Proceedings of the National Academy of Sciences.

[45]  D. Turner,et al.  NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. , 2011, RNA.

[46]  G. Fox,et al.  UNAC tetraloops: to what extent do they mimic GNRA tetraloops? , 2012, Biopolymers.

[47]  Arash Bahrami,et al.  RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts , 2012, Journal of biomolecular NMR.

[48]  David Baker,et al.  Role of the Biomolecular Energy Gap in Protein Design, Structure, and Evolution , 2012, Cell.

[49]  A. T. Chang,et al.  Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly). , 2012, Biochemistry.

[50]  F. Allain,et al.  A procedure to validate and correct the 13C chemical shift calibration of RNA datasets , 2012, Journal of biomolecular NMR.

[51]  D. Turner,et al.  Novel Conformation of an RNA Structural Switch , 2012, Biochemistry.

[52]  Harald Schwalbe,et al.  NMR Studies of HAR1 RNA Secondary Structures Reveal Conformational Dynamics in the Human RNA , 2012, Chembiochem : a European journal of chemical biology.

[53]  S. Wijmenga,et al.  Nucleic acid helix structure determination from NMR proton chemical shifts , 2013, Journal of biomolecular NMR.

[54]  A. Stelzer,et al.  Prediction of RNA 1H and 13C chemical shifts: a structure based approach. , 2013, The journal of physical chemistry. B.

[55]  R. Sigel,et al.  The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron , 2012, Nucleic acids research.

[56]  Aleksandr B. Sahakyan,et al.  A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory. , 2013, The Journal of chemical physics.

[57]  I. Andricioaei,et al.  Utility of 1H NMR chemical shifts in determining RNA structure and dynamics. , 2013, The journal of physical chemistry. B.

[58]  Flora Amato,et al.  structure-based approach , 2015 .