Measurement and Compensation for the Amplitude and Phase Spectral Distortions of an Interference Signal in Optical Coherence Tomography for the Relative Optical-Spectrum Width Exceeding 10%

We describe a universal method of compensating for the arbitrary dispersion in the spectral and time domain optical coherence tomography systems. In combination with the amplitude method of correcting the optical-spectrum irregularities, this approach allows one to obtain the spectrally determined resolution if the instrument function is close to the Gaussian one. The efficiency of the method is demonstrated in the time and spectral domain optical coherence tomographies with the fully fiber-type optical systems for the relative optical-spectrum width exceeding 10%.

[1]  I. Walmsley,et al.  Blind dispersion compensation for optical coherence tomography , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[2]  Grigory V. Gelikonov,et al.  Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography , 2009 .

[3]  Daniel L Marks,et al.  Autofocus algorithm for dispersion correction in optical coherence tomography. , 2003, Applied optics.

[4]  J. Nelson,et al.  Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. , 2001, Applied optics.

[5]  N. Wada,et al.  Spectral domain interferometry for OCDR using non-Gaussian broad-band sources , 2001, IEEE Photonics Technology Letters.

[6]  Renu Tripathi,et al.  Spectral shaping for non-Gaussian source spectra in optical coherence tomography. , 2002, Optics letters.

[7]  Daniel L Marks,et al.  Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. , 2003, Applied optics.

[8]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[9]  A. Moiseev,et al.  Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography , 2017 .

[10]  G. V. Gelikonov,et al.  A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT , 2014, 1406.3448.

[11]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[12]  Bo Liu,et al.  Optimal spectral reshaping for resolution improvement in optical coherence tomography. , 2006, Optics express.

[13]  Bryan M. Williams,et al.  High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography. , 2016, Optics express.

[14]  Frédérique Vanholsbeeck,et al.  Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. , 2012, Optics express.

[15]  B E Bouma,et al.  Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. , 1996, Optics letters.

[16]  R. Zawadzki,et al.  Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography. , 2001, Optics express.

[17]  A. T. Semenov,et al.  Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures , 1996 .

[18]  D. A. Terpelov,et al.  A control system for the optical-fiber piezoelectric modulator of the optical path , 2010 .

[19]  Stephen A Boppart,et al.  Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images. , 2004, Journal of biomedical optics.

[20]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.