暂无分享,去创建一个
J. Robin B. Cockett | Cole Comfort | Priyaa V. Srinivasan | J. Cockett | Cole Comfort | P. Srinivasan | Robin Cockett
[1] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[2] C. Monroe,et al. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.
[3] M. Kontsevich. Operads and Motives in Deformation Quantization , 1999, math/9904055.
[4] J. Robin B. Cockett,et al. Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..
[5] Yves Lafont,et al. Towards an algebraic theory of Boolean circuits , 2003 .
[6] E. Knill,et al. Realization of quantum error correction , 2004, Nature.
[7] J. Robin B. Cockett,et al. Restriction categories III: colimits, partial limits and extensivity , 2007, Mathematical Structures in Computer Science.
[8] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[9] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[10] W. Bertram,et al. Associative Geometries. I: Torsors, linear relations and Grassmannians , 2009, 0903.5441.
[11] Pieter Hofstra,et al. RANGE CATEGORIES II: TOWARDS REGULARITY , 2012 .
[12] Brett Gordon Giles. An investigation of some theoretical aspects of reversible computing , 2014 .
[13] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[14] M. Wolf,et al. Sinkhorn normal form for unitary matrices , 2014, 1408.5728.
[15] Siyao Xu. Reversible Logic Synthesis with Minimal Usage of Ancilla Bits , 2015, ArXiv.
[16] Simon Perdrix,et al. A Simplified Stabilizer ZX-calculus , 2016, QPL.
[17] Aleks Kissinger,et al. Categories of quantum and classical channels , 2016, Quantum Inf. Process..
[18] Jianxin Chen,et al. A finite presentation of CNOT-dihedral operators , 2016, QPL.