The Category CNOT

We exhibit a complete set of identities for CNOT, the symmetric monoidal category generated by the controlled-not gate, the swap gate, and the computational ancillae. We prove that CNOT is a discrete inverse category. Moreover, we prove that CNOT is equivalent to the category of partial isomorphisms of finitely-generated non-empty commutative torsors of characteristic 2. Equivalently this is the category of affine partial isomorphisms between finite-dimensional Z2 vector spaces.

[1]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[2]  C. Monroe,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[3]  M. Kontsevich Operads and Motives in Deformation Quantization , 1999, math/9904055.

[4]  J. Robin B. Cockett,et al.  Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..

[5]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[6]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[7]  J. Robin B. Cockett,et al.  Restriction categories III: colimits, partial limits and extensivity , 2007, Mathematical Structures in Computer Science.

[8]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[9]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[10]  W. Bertram,et al.  Associative Geometries. I: Torsors, linear relations and Grassmannians , 2009, 0903.5441.

[11]  Pieter Hofstra,et al.  RANGE CATEGORIES II: TOWARDS REGULARITY , 2012 .

[12]  Brett Gordon Giles An investigation of some theoretical aspects of reversible computing , 2014 .

[13]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[14]  M. Wolf,et al.  Sinkhorn normal form for unitary matrices , 2014, 1408.5728.

[15]  Siyao Xu Reversible Logic Synthesis with Minimal Usage of Ancilla Bits , 2015, ArXiv.

[16]  Simon Perdrix,et al.  A Simplified Stabilizer ZX-calculus , 2016, QPL.

[17]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[18]  Jianxin Chen,et al.  A finite presentation of CNOT-dihedral operators , 2016, QPL.