Viscous hydrophilic injection matrices for serial crystallography

High-viscosity extrusion injection is an efficient means for high-throughput crystal delivery for serial measurements at synchrotrons and XFELs. Hydrogels for crystal embedding are described that are compatible with a wide range of crystallization precipitants, result in low X-ray background and afford very stable streams suitable for time-resolved measurements.

[1]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[2]  Masaki Yamamoto,et al.  Micro-crystallography comes of age. , 2012, Current opinion in structural biology.

[3]  K. Takano,et al.  A Novel Approach for Protein Crystallization by a Synthetic Hydrogel with Thermoreversible Gelation Polymer , 2013 .

[4]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[5]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[6]  Ezequiel Panepucci,et al.  EIGER detector: application in macromolecular crystallography , 2016, Acta crystallographica. Section D, Structural biology.

[7]  C. B. Hollabaugh,et al.  Carboxymethylcellulose. Uses and Applications , 1945 .

[8]  Ezequiel Panepucci,et al.  Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. , 2015, Acta crystallographica. Section D, Biological crystallography.

[9]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[10]  Garth J. Williams,et al.  Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography , 2016, Nature Communications.

[11]  Takashi Kameshima,et al.  A three-dimensional movie of structural changes in bacteriorhodopsin , 2016, Science.

[12]  José Juan Escobar-Chávez,et al.  Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. , 2006, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[13]  J. F. van der Veen,et al.  Diffraction-limited storage rings - a window to the science of tomorrow. , 2014, Journal of synchrotron radiation.

[14]  J. Rose,et al.  Corrigendum: Fast native-SAD phasing for routine macromolecular structure determination , 2015, Nature Methods.

[15]  Mahfoozur Rahman,et al.  Colloidal drug delivery systems in vaccine delivery. , 2013, Current drug targets.

[16]  O. Nureki,et al.  Oil-free hyaluronic acid matrix for serial femtosecond crystallography , 2016, Scientific Reports.

[17]  Anton Barty,et al.  Serial femtosecond crystallography of soluble proteins in lipidic cubic phase , 2015, IUCrJ.

[18]  Sébastien Boutet,et al.  Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation , 2015, Science.

[19]  Sébastien Boutet,et al.  A novel inert crystal delivery medium for serial femtosecond crystallography , 2015, IUCrJ.

[20]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[21]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[22]  C. David,et al.  A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering , 2015, Scientific Reports.

[23]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[24]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[25]  I. R. Schmolka Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. , 1972, Journal of biomedical materials research.

[26]  H. Chapman,et al.  Femtosecond protein nanocrystallography-data analysis methods. , 2010, Optics express.

[27]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[28]  Manfred Burghammer,et al.  Lipidic cubic phase serial millisecond crystallography using synchrotron radiation , 2015, IUCrJ.

[29]  W. Kabsch Processing of X-ray snapshots from crystals in random orientations , 2014, Acta crystallographica. Section D, Biological crystallography.

[30]  G. Tinti,et al.  Prototype characterization of the JUNGFRAU pixel detector for SwissFEL , 2014 .

[31]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[32]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[33]  Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. , 2016, Structure.

[34]  Wei Liu,et al.  Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography , 2014, Nature Protocols.

[35]  Anton Barty,et al.  Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein , 2016, Science.

[36]  L. Casettari,et al.  Poloxamer Thermogel Systems as Medium for Crystallization , 2011, Pharmaceutical Research.

[37]  Martin Warmer,et al.  Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering , 2016, Journal of applied crystallography.

[38]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[39]  B. Selinsky Membrane Protein Protocols Expression, Purification,and Characterization , 2003 .

[40]  Suvendu Bhattacharya,et al.  Hydrocolloids as thickening and gelling agents in food: a critical review , 2010, Journal of food science and technology.