IP3 Receptor Properties and Function at Membrane Contact Sites.

[1]  M. Bootman,et al.  The regulation of autophagy by calcium signals: Do we have a consensus? , 2017, Cell calcium.

[2]  V. Giorgio,et al.  Calcium and regulation of the mitochondrial permeability transition. , 2017, Cell calcium.

[3]  M. Previati,et al.  Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). , 2017, Biochimica et biophysica acta. Bioenergetics.

[4]  Silvio C. E. Tosatto,et al.  Ca2+ binding to F‐ATP synthase β subunit triggers the mitochondrial permeability transition , 2017, EMBO reports.

[5]  J. Parys,et al.  Resveratrol-induced autophagy is dependent on IP3Rs and on cytosolic Ca2. , 2017, Biochimica et biophysica acta. Molecular cell research.

[6]  M. Pagano,et al.  PTEN counteracts FBXL2 to promote IP3R3– and Ca2+–mediated apoptosis limiting tumour growth , 2017, Nature.

[7]  G. Bultynck,et al.  Modulation of Ca2+ Signaling by Anti-apoptotic B-Cell Lymphoma 2 Proteins at the Endoplasmic Reticulum–Mitochondrial Interface , 2017, Front. Oncol..

[8]  G. Bultynck,et al.  Endoplasmic Reticulum–Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival , 2017, Front. Oncol..

[9]  K. Mikoshiba,et al.  IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography , 2017, Proceedings of the National Academy of Sciences.

[10]  L. Scorrano,et al.  Reply to Filadi et al.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? , 2017, Proceedings of the National Academy of Sciences.

[11]  A. Luini,et al.  On the role of Mitofusin 2 in endoplasmic reticulum–mitochondria tethering , 2017, Proceedings of the National Academy of Sciences.

[12]  P. Pizzo,et al.  The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. , 2017, Cell calcium.

[13]  Y. Xu,et al.  RCN1 suppresses ER stress-induced apoptosis via calcium homeostasis and PERK–CHOP signaling , 2017, Oncogenesis.

[14]  C. Manzoni The LRRK2–macroautophagy axis and its relevance to Parkinson's disease , 2017, Biochemical Society transactions.

[15]  Cheng-Chang Chen,et al.  Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function , 2017, Front. Pharmacol..

[16]  W. Noble,et al.  The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy , 2017, Current Biology.

[17]  T. Simmen,et al.  Of yeast, mice and men: MAMs come in two flavors , 2017, Biology Direct.

[18]  S. Tovey,et al.  Cyclic AMP Recruits a Discrete Intracellular Ca2+ Store by Unmasking Hypersensitive IP3 Receptors , 2017, Cell reports.

[19]  M. R. Baker,et al.  Structural Insights into IP3R Function. , 2017, Advances in experimental medicine and biology.

[20]  C. Mammucari,et al.  Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. , 2016, Trends in biochemical sciences.

[21]  Fang Sun,et al.  Regulation of autophagy by Ca2+ , 2016, Tumor Biology.

[22]  A. Schapira,et al.  Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx , 2016, Journal of Cell Science.

[23]  J. Parys,et al.  Bcl-2 proteins and calcium signaling: complexity beneath the surface , 2016, Oncogene.

[24]  Luca Scorrano,et al.  Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether , 2016, Proceedings of the National Academy of Sciences.

[25]  S. Janssens,et al.  ER–Mitochondria contact sites: A new regulator of cellular calcium flux comes into play , 2016, The Journal of cell biology.

[26]  S. Baksh,et al.  TMX1 determines cancer cell metabolism as a thiol-based modulator of ER–mitochondria Ca2+ flux , 2016, The Journal of cell biology.

[27]  Yuyang Sun,et al.  Functional role of TRP channels in modulating ER stress and Autophagy. , 2016, Cell calcium.

[28]  J. Parys,et al.  Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. , 2016, Cell calcium.

[29]  L. Pellegrini,et al.  The coming of age of the mitochondria–ER contact: a matter of thickness , 2016, Cell Death and Differentiation.

[30]  D. Rubinsztein,et al.  Mammalian Autophagy: How Does It Work? , 2016, Annual review of biochemistry.

[31]  B. Rothermel,et al.  Endolysosomal two‐pore channels regulate autophagy in cardiomyocytes , 2016, The Journal of physiology.

[32]  P. Pinton,et al.  ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling. , 2016, Biochimica et biophysica acta.

[33]  M. Ankarcrona,et al.  Mitofusin‐2 knockdown increases ER–mitochondria contact and decreases amyloid β‐peptide production , 2016, Journal of cellular and molecular medicine.

[34]  M. Betenbaugh,et al.  The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface , 2016, Journal of Bioenergetics and Biomembranes.

[35]  G. Bultynck Onco-IP3Rs Feed Cancerous Cravings for Mitochondrial Ca(2.). , 2016, Trends in biochemical sciences.

[36]  A. Morgan Ca2+ dialogue between acidic vesicles and ER. , 2016, Biochemical Society transactions.

[37]  F. van Petegem,et al.  Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release , 2016, Science Signaling.

[38]  Colin W. Taylor,et al.  IP3 receptors: Take four IP3 to open , 2016, Science Signaling.

[39]  J. Pittman,et al.  Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo , 2016, The Journal of cell biology.

[40]  J. Diehl,et al.  Selective Vulnerability of Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. , 2016, Cell reports.

[41]  J. Foskett,et al.  Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-xL control of cell viability , 2016, Proceedings of the National Academy of Sciences.

[42]  Christopher C. J. Miller,et al.  There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases , 2016, Trends in Neurosciences.

[43]  David L. Prole,et al.  Inositol 1,4,5‐trisphosphate receptors and their protein partners as signalling hubs , 2016, The Journal of physiology.

[44]  Wuyang Wang,et al.  A Molecular Mechanism to Regulate Lysosome Motility for Lysosome Positioning and Tubulation , 2016, Nature Cell Biology.

[45]  V. Tiranti,et al.  Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase , 2015, Cell Death and Differentiation.

[46]  G. Wildey,et al.  Synergistic killing of human small cell lung cancer cells by the Bcl-2-inositol 1,4,5-trisphosphate receptor disruptor BIRD-2 and the BH3-mimetic ABT-263 , 2015, Cell Death and Disease.

[47]  Wen Jun Xu,et al.  The roles of IP3 receptor in energy metabolic pathways and reactive oxygen species homeostasis revealed by metabolomic and biochemical studies. , 2015, Biochimica et biophysica acta.

[48]  M. Baker,et al.  Gating machinery of InsP3R channels revealed by electron cryomicroscopy , 2015, Nature.

[49]  S. Ducreux,et al.  The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury , 2015, Cell Death and Differentiation.

[50]  Sandip Patel,et al.  Coupling acidic organelles with the ER through Ca²⁺ microdomains at membrane contact sites. , 2015, Cell calcium.

[51]  S. Wesselborg,et al.  Autophagy signal transduction by ATG proteins: from hierarchies to networks , 2015, Cellular and Molecular Life Sciences.

[52]  J. Parys,et al.  The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel. , 2015, Biochimica et biophysica acta.

[53]  K. Mikoshiba,et al.  Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release , 2015, Cell calcium.

[54]  J. Parys,et al.  ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally , 2015, Autophagy.

[55]  I. Nabi,et al.  Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria , 2015, Journal of Cell Science.

[56]  H. Stenmark,et al.  ER–endosome contact sites: molecular compositions and functions , 2015, The EMBO journal.

[57]  J. Pink,et al.  A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2 , 2015, Oncotarget.

[58]  Sandip Patel,et al.  Function and dysfunction of two-pore channels , 2015, Science Signaling.

[59]  M. Murgia,et al.  Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. , 2015, Cell calcium.

[60]  A. Galione A primer of NAADP-mediated Ca(2+) signalling: From sea urchin eggs to mammalian cells. , 2015, Cell calcium.

[61]  A. Galione,et al.  TPC: the NAADP discovery channel? , 2015, Biochemical Society transactions.

[62]  Helen Waller-Evans,et al.  Regulation of TRPML1 function. , 2015, Biochemical Society transactions.

[63]  R. Lees,et al.  Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells , 2015, International journal of molecular sciences.

[64]  A. M. Riley,et al.  Designer small molecules to target calcium signalling. , 2015, Biochemical Society transactions.

[65]  Elisa Greotti,et al.  Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling , 2015, Proceedings of the National Academy of Sciences.

[66]  P. Pinton,et al.  Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. , 2015, Antioxidants & redox signaling.

[67]  J. Cheung,et al.  Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU , 2015, Science Signaling.

[68]  M. Ferrer,et al.  Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation , 2015, Proceedings of the National Academy of Sciences.

[69]  Sandip Patel,et al.  Evolution of acidic Ca²⁺ stores and their resident Ca²⁺-permeable channels. , 2015, Cell calcium.

[70]  A. Ballabio,et al.  Lysosomal calcium signaling regulates autophagy via calcineurin and TFEB , 2015, Nature Cell Biology.

[71]  P. Agostinis,et al.  The BH4 Domain of Anti-apoptotic Bcl-XL, but Not That of the Related Bcl-2, Limits the Voltage-dependent Anion Channel 1 (VDAC1)-mediated Transfer of Pro-apoptotic Ca2+ Signals to Mitochondria* , 2015, The Journal of Biological Chemistry.

[72]  P. Pinton,et al.  A novel Ca²⁺-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca²⁺ signalling. , 2015, Cell calcium.

[73]  A. Schapira,et al.  Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition , 2015, Journal of Cell Science.

[74]  P. Dönnes,et al.  WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome , 2015, Journal of Cell Science.

[75]  B. Levine,et al.  Autosis and autophagic cell death: the dark side of autophagy , 2014, Cell Death and Differentiation.

[76]  K. Mikoshiba Role of IP3 receptor signaling in cell functions and diseases. , 2015, Advances in biological regulation.

[77]  A. Galione,et al.  Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling , 2014, The Journal of Biological Chemistry.

[78]  D. Olive,et al.  ITPR1 protects renal cancer cells against natural killer cells by inducing autophagy. , 2014, Cancer research.

[79]  Fukun W. Hoffmann,et al.  Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex , 2014, Proceedings of the National Academy of Sciences.

[80]  S. Tovey,et al.  Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes , 2014, PloS one.

[81]  L. Missiaen,et al.  Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. , 2014, Biochimica et biophysica acta.

[82]  P. Agostinis,et al.  New functions of mitochondria associated membranes in cellular signaling. , 2014, Biochimica et biophysica acta.

[83]  J. Parys,et al.  A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. , 2014, Biochimica et biophysica acta.

[84]  E. Greenberg,et al.  Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. , 2014, Biochimica et biophysica acta.

[85]  L. Scorrano,et al.  At the right distance: ER-mitochondria juxtaposition in cell life and death. , 2014, Biochimica et biophysica acta.

[86]  M. Ikura,et al.  Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. , 2014, European journal of pharmacology.

[87]  K. Mikoshiba,et al.  Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors , 2014, Proceedings of the National Academy of Sciences.

[88]  J. Sneyd,et al.  A computational model of lysosome–ER Ca2+ microdomains , 2014, Journal of Cell Science.

[89]  S. Grimm,et al.  Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction , 2014, Cell Death and Differentiation.

[90]  Colin W. Taylor,et al.  Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor , 2014, British journal of pharmacology.

[91]  D. Bernard,et al.  Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence , 2014, Nature Communications.

[92]  J. Parys The IP3 Receptor as a Hub for Bcl-2 Family Proteins in Cell Death Control and Beyond , 2014, Science Signaling.

[93]  A. Evans,et al.  Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling , 2014, bioRxiv.

[94]  Wuyang Wang,et al.  TRPML1: an ion channel in the lysosome. , 2014, Handbook of experimental pharmacology.

[95]  M. Betenbaugh,et al.  Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival , 2014, Journal of Bioenergetics and Biomembranes.

[96]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[97]  J. Foskett,et al.  Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors , 2013, Proceedings of the National Academy of Sciences.

[98]  John Calvin Reed,et al.  ER stress-induced cell death mechanisms. , 2013, Biochimica et biophysica acta.

[99]  C. Hetz,et al.  When ER stress reaches a dead end. , 2013, Biochimica et biophysica acta.

[100]  R. Xavier,et al.  Autosis is a Na+,K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia , 2013, Proceedings of the National Academy of Sciences.

[101]  A. Galione,et al.  The endoplasmic reticulum and junctional membrane communication during calcium signaling. , 2013, Biochimica et biophysica acta.

[102]  N. Mewton,et al.  Depressing Mitochondria-Reticulum Interactions Protects Cardiomyocytes From Lethal Hypoxia-Reoxygenation Injury , 2013, Circulation.

[103]  N. Ktistakis,et al.  Omegasomes: PI3P platforms that manufacture autophagosomes. , 2013, Essays in biochemistry.

[104]  D. Green,et al.  Mitochondrial regulation of cell death. , 2013, Cold Spring Harbor perspectives in biology.

[105]  G. Tall,et al.  Functional Inositol 1,4,5-Trisphosphate Receptors Assembled from Concatenated Homo- and Heteromeric Subunits*♦ , 2013, The Journal of Biological Chemistry.

[106]  Daniel A East,et al.  Ca2+ in quality control , 2013, Autophagy.

[107]  Stefan J. Barfeld,et al.  Modulation of intracellular calcium homeostasis blocks autophagosome formation , 2013, Autophagy.

[108]  H. McBride,et al.  MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. , 2013, Molecular cell.

[109]  J. Yue,et al.  Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH , 2013, The Journal of Biological Chemistry.

[110]  P. Vandenabeele,et al.  IP3, a small molecule with a powerful message. , 2013, Biochimica et biophysica acta.

[111]  P. Pandolfi,et al.  Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner , 2013, Cell Death and Differentiation.

[112]  P. Pinton,et al.  Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction , 2013, Autophagy.

[113]  K. Mikoshiba,et al.  IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2 , 2013, Cell Death and Disease.

[114]  L. Missiaen,et al.  mTOR-Controlled Autophagy Requires Intracellular Ca2+ Signaling , 2013, PloS one.

[115]  G. Bultynck,et al.  Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. , 2013, Biochimica et biophysica acta.

[116]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[117]  Alexander M. Lewis,et al.  Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles , 2013, The Journal of cell biology.

[118]  Yasushi Hiraoka,et al.  Autophagosomes form at ER–mitochondria contact sites , 2013, Nature.

[119]  S. Vielhaber,et al.  The control of brain mitochondrial energization by cytosolic calcium: The mitochondrial gas pedal , 2013, IUBMB life.

[120]  E. Knecht,et al.  Send Orders of Reprints at Reprints@benthamscience.net Ca 2+ -sensor Proteins in the Autophagic and Endocytic Traffic , 2022 .

[121]  L. Galluzzi,et al.  Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition , 2013, Cell cycle.

[122]  Colin W. Taylor,et al.  Lysosomes shape Ins(1,4,5)P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum , 2013, Journal of Cell Science.

[123]  A. Schapira,et al.  Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals , 2013, Journal of Cell Science.

[124]  J. Martinou,et al.  Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. , 2013, Cold Spring Harbor perspectives in biology.

[125]  S. Smaili,et al.  The Role of Calcium Stores in Apoptosis and Autophagy , 2012 .

[126]  L. Orci,et al.  Mitofusin-2 Independent Juxtaposition of Endoplasmic Reticulum and Mitochondria: An Ultrastructural Study , 2012, PloS one.

[127]  Craig Montell,et al.  Drosophila TRPML Is Required for TORC1 Activation , 2012, Current Biology.

[128]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[129]  J. Parys,et al.  Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy , 2012, Cell Communication and Signaling.

[130]  J. Foskett,et al.  Mitochondrial Ca(2+) signals in autophagy. , 2012, Cell calcium.

[131]  P. Agostinis,et al.  PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress , 2012, Cell Death and Differentiation.

[132]  P. Pinton,et al.  Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis , 2012, Cell Death and Disease.

[133]  R. Balaban,et al.  Role of mitochondrial Ca2+ in the regulation of cellular energetics. , 2012, Biochemistry.

[134]  M. Ikura,et al.  Structural and functional conservation of key domains in InsP3 and ryanodine receptors , 2011, Nature.

[135]  C. Shaw,et al.  VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis , 2011, Human molecular genetics.

[136]  G. Churchill,et al.  Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP , 2011, Human molecular genetics.

[137]  Bill B. Chen,et al.  F box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest , 2011, Oncogene.

[138]  M. de Maeyer,et al.  Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl , 2011, Cell Death and Differentiation.

[139]  A. Messina,et al.  VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria , 2011, Cell Death and Differentiation.

[140]  J. Parys,et al.  Inositol 1,4,5-trisphosphate and its receptors. , 2012, Advances in experimental medicine and biology.

[141]  J. Lanner Ryanodine receptor physiology and its role in disease. , 2012, Advances in experimental medicine and biology.

[142]  P. Agostinis,et al.  Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated , 2011, Autophagy.

[143]  A. Galione,et al.  Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. , 2011, The Biochemical journal.

[144]  Bill B. Chen,et al.  FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest , 2011, Cell cycle.

[145]  A. Ballabio,et al.  Transcriptional Activation of Lysosomal Exocytosis Promotes Cellular Clearance , 2011, Developmental cell.

[146]  Zhe Lu,et al.  Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor , 2011, Nature Structural &Molecular Biology.

[147]  J. Parys,et al.  A dual role for Ca(2+) in autophagy regulation. , 2011, Cell calcium.

[148]  A. Walker,et al.  Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis , 2011, IUBMB life.

[149]  M. Bootman,et al.  Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. , 2011, Cell calcium.

[150]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[151]  G. Churchill,et al.  Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Regulates Autophagy in Cultured Astrocytes* , 2011, The Journal of Biological Chemistry.

[152]  P. Vangheluwe,et al.  The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. , 2011, Cold Spring Harbor perspectives in biology.

[153]  L. Missiaen,et al.  The IP(3) receptor-mitochondria connection in apoptosis and autophagy. , 2011, Biochimica et biophysica acta.

[154]  J. Parys,et al.  Induction of Ca²+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. , 2011, Blood.

[155]  S. Grimm,et al.  Fis1 and Bap31 bridge the mitochondria–ER interface to establish a platform for apoptosis induction , 2011, The EMBO journal.

[156]  M. Michalak,et al.  Organellar calcium buffers. , 2011, Cold Spring Harbor perspectives in biology.

[157]  K. Mikoshiba,et al.  Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor , 2010, Neuron.

[158]  P. Pandolfi,et al.  PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release , 2010, Science.

[159]  L. Scorrano,et al.  Trichoplein/mitostatin regulates endoplasmic reticulum–mitochondria juxtaposition , 2010, EMBO reports.

[160]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[161]  Mitsuhiko Ikura,et al.  Structural Studies of Inositol 1,4,5-Trisphosphate Receptor , 2010, The Journal of Biological Chemistry.

[162]  M. Birnbaum,et al.  Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria , 2010, Cell.

[163]  György Hajnóczky,et al.  Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. , 2010, Molecular cell.

[164]  B. Viollet,et al.  AMPK-independent induction of autophagy by cytosolic Ca2+ increase. , 2010, Cellular signalling.

[165]  M. Bortolozzi,et al.  Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. , 2010, Molecular cell.

[166]  S. Joseph,et al.  Role of Inositol Trisphosphate Receptors in Autophagy in DT40 Cells , 2010, The Journal of Biological Chemistry.

[167]  J. Foskett,et al.  Apoptosis Protection by Mcl-1 and Bcl-2 Modulation of Inositol 1,4,5-Trisphosphate Receptor-dependent Ca2+ Signaling* , 2010, The Journal of Biological Chemistry.

[168]  Taufiq Rahman,et al.  Regulation of Inositol 1,4,5-Trisphosphate Receptors by cAMP Independent of cAMP-dependent Protein Kinase , 2010, The Journal of Biological Chemistry.

[169]  J. Vicencio,et al.  Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. , 2010, Cell calcium.

[170]  T. Noda,et al.  A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation , 2009, Nature Cell Biology.

[171]  Eeva-Liisa Eskelinen,et al.  3D tomography reveals connections between the phagophore and endoplasmic reticulum , 2009, Autophagy.

[172]  M. Bootman,et al.  The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor , 2009, Proceedings of the National Academy of Sciences.

[173]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[174]  E. Morselli,et al.  The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1 , 2009, Cell Death and Differentiation.

[175]  B. Devogelaere,et al.  Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. , 2009, Biochimica et biophysica acta.

[176]  R. Rizzuto,et al.  Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. , 2008, Molecular cell.

[177]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[178]  P. Pinton,et al.  Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. , 2008, Biochemical and biophysical research communications.

[179]  P. Pinton,et al.  Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis , 2008, Oncogene.

[180]  Colin W. Taylor,et al.  Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP , 2008, The Journal of cell biology.

[181]  K. Mikoshiba,et al.  ATP Modulation of Ca2+ Release by Type-2 and Type-3 Inositol (1, 4, 5)-Triphosphate Receptors , 2008, Journal of Biological Chemistry.

[182]  Xiang Li,et al.  Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. , 2008, Molecular cell.

[183]  F. Natt,et al.  Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. , 2008, Cell metabolism.

[184]  M. Bootman,et al.  Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis , 2008, Proceedings of the National Academy of Sciences.

[185]  A. Letai,et al.  Diagnosing and exploiting cancer's addiction to blocks in apoptosis , 2008, Nature Reviews Cancer.

[186]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival , 2007, Cell.

[187]  M. Bollen,et al.  Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor. , 2007, The Biochemical journal.

[188]  K. Mikoshiba,et al.  Molecular Basis of the Isoform-specific Ligand-binding Affinity of Inositol 1,4,5-Trisphosphate Receptors* , 2007, Journal of Biological Chemistry.

[189]  Don-On Daniel Mak,et al.  Inositol trisphosphate receptor Ca2+ release channels. , 2007, Physiological reviews.

[190]  G. Hajnóczky,et al.  IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond , 2007, Apoptosis.

[191]  R. Rizzuto,et al.  Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. , 2007, Molecular cell.

[192]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[193]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[194]  K. Mikoshiba,et al.  IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. , 2006, Molecular cell.

[195]  D. Yule,et al.  Akt Kinase Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors* , 2006, Journal of Biological Chemistry.

[196]  D. A. Gomes,et al.  The Type III Inositol 1,4,5-Trisphosphate Receptor Preferentially Transmits Apoptotic Ca2+ Signals into Mitochondria* , 2005, Journal of Biological Chemistry.

[197]  D. Rubinsztein,et al.  Lithium induces autophagy by inhibiting inositol monophosphatase , 2005, The Journal of cell biology.

[198]  C. Thompson,et al.  The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R , 2005, Nature Cell Biology.

[199]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[200]  I. Bezprozvanny,et al.  Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. , 2005, Biophysical journal.

[201]  I. Bezprozvanny,et al.  Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. , 2005, Biophysical journal.

[202]  K. Mikoshiba,et al.  Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. , 2005, Molecular cell.

[203]  K. Mikoshiba,et al.  Subtype-Specific and ER Lumenal Environment-Dependent Regulation of Inositol 1,4,5-Trisphosphate Receptor Type 1 by ERp44 , 2005, Cell.

[204]  K. Mikoshiba,et al.  Structural insights into the regulatory mechanism of IP3 receptor. , 2004, Biochimica et biophysica acta.

[205]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[206]  M. Berridge,et al.  Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate , 2004, The Journal of cell biology.

[207]  L. Missiaen,et al.  Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. , 2004, The Biochemical journal.

[208]  S. Snyder,et al.  Inositol 1,4,5-trisphosphate receptors as signal integrators. , 2004, Annual review of biochemistry.

[209]  J. Parys,et al.  Subcellular distribution of the inositol 1,4,5‐trisphosphate receptors: functional relevance and molecular determinants , 2004, Biology of the cell.

[210]  M. Berridge,et al.  Regulation of InsP3 receptor activity by neuronal Ca2+‐binding proteins , 2004, The EMBO journal.

[211]  A. Tepikin,et al.  Calcium-binding Protein 1 Is an Inhibitor of Agonist-evoked, Inositol 1,4,5-Trisphosphate-mediated Calcium Signaling* , 2004, Journal of Biological Chemistry.

[212]  L. Missiaen,et al.  Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells , 1993, Pflügers Archiv.

[213]  S. Snyder,et al.  Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis , 2003, Nature Cell Biology.

[214]  L. Missiaen,et al.  Calcineurin and intracellular Ca2+-release channels: regulation or association? , 2003, Biochemical and biophysical research communications.

[215]  J. Foskett,et al.  Novel Regulation of Calcium Inhibition of the Inositol 1,4,5-trisphosphate Receptor Calcium-release Channel , 2003, The Journal of general physiology.

[216]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[217]  K. Mikoshiba,et al.  Critical Regions for Activation Gating of the Inositol 1,4,5-Trisphosphate Receptor* , 2003, The Journal of Biological Chemistry.

[218]  G. Shore,et al.  Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol , 2003, The Journal of cell biology.

[219]  W. Dehaen,et al.  Pharmacology of inositol trisphosphate receptors , 2003, Pflügers Archiv.

[220]  K. Mikoshiba,et al.  Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand , 2002, Nature.

[221]  L. Missiaen,et al.  Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. , 2002, The Biochemical journal.

[222]  N. Vardi,et al.  Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[223]  A. Galione,et al.  NAADP induces Ca2+ oscillations via a two‐pool mechanism by priming IP3‐ and cADPR‐sensitive Ca2+ stores , 2001, The EMBO journal.

[224]  J. Foskett,et al.  Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels , 2001, The Journal of general physiology.

[225]  G. Hajnóczky,et al.  Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. , 2001, Cell calcium.

[226]  Teruo Hayashi,et al.  Regulating ankyrin dynamics: Roles of sigma-1 receptors. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[227]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[228]  L. Missiaen,et al.  Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. , 2000, Cell calcium.

[229]  L. Missiaen,et al.  Ca2+ and calmodulin differentially modulate myo-inositol 1,4,5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms , 2000 .

[230]  S. Morris,et al.  Expression of inositol trisphosphate receptors. , 1999, Cell calcium.

[231]  C. Guguen-Guillouzo,et al.  Identification of a novel Skp2‐like mammalian protein containing F‐box and leucine‐rich repeats , 1999, FEBS letters.

[232]  Teiichi Furuichi,et al.  Calmodulin Mediates Calcium-Dependent Inactivation of the Cerebellar Type 1 Inositol 1,4,5-Trisphosphate Receptor , 1999, Neuron.

[233]  A. Weidema,et al.  The Bell-shaped Ca2+ Dependence of the Inositol 1,4,5-Trisphosphate-induced Ca2+ Release Is Modulated by Ca2+/Calmodulin* , 1999, The Journal of Biological Chemistry.

[234]  J C Reed,et al.  Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. , 1999, Science.

[235]  Grant C. Churchill,et al.  Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells , 1999, Nature.

[236]  Kenzo Hirose,et al.  Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes , 1999, The EMBO journal.

[237]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[238]  M. Takahashi,et al.  Functional Properties of the Type-3 InsP3 Receptor in 16HBE14o− Bronchial Mucosal Cells* , 1998, The Journal of Biological Chemistry.

[239]  S. Patel,et al.  Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[240]  A. Marks,et al.  T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis , 1997, Molecular and cellular biology.

[241]  T. Kurosaki,et al.  Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5‐trisphosphate receptors in signal transduction through the B‐cell antigen receptor , 1997, The EMBO journal.

[242]  K. Mikoshiba,et al.  The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. , 1995, The Biochemical journal.

[243]  T. Südhof,et al.  Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. , 1994, The Journal of biological chemistry.

[244]  T. Hosoya,et al.  Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. , 1993, The Journal of antibiotics.

[245]  I. Bezprozvanny,et al.  ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites , 1993, Neuron.

[246]  M. Berridge,et al.  The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. , 1992, The Journal of biological chemistry.

[247]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[248]  S. W. Sernett,et al.  Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. , 1992, The Journal of biological chemistry.

[249]  James Watras,et al.  Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum , 1991, Nature.

[250]  S. M. Goldin,et al.  Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. , 1991, Science.

[251]  M. Iino,et al.  Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci , 1990, The Journal of general physiology.

[252]  J. Mccormack,et al.  Role of calcium ions in regulation of mammalian intramitochondrial metabolism. , 1990, Physiological reviews.