Actively Secure Two-Party Evaluation of Any Quantum Operation

We provide the first two-party protocol allowing Alice and Bob to evaluate privately even against active adversaries any completely positive, trace-preserving map $$\mathscr {F} \in \mathrm {L}\mathcal {A}_{{{\mathrm{in}}}} \otimes \mathcal {B}_{{{\mathrm{in}}}} \rightarrow $$$$\mathrm {L}\mathcal {A}_{{{\mathrm{out}}}} \otimes \mathcal {B}_{{{\mathrm{out}}}}$$, given as a quantum circuit, upon their joint quantum input state $$\rho _{\mathrm {in}}\in \mathrm{D}{\mathcal {A}_{{{\mathrm{in}}}} \otimes \mathcal {B}_{{{\mathrm{in}}}}}$$. Our protocol leaks no more to any active adversary than an ideal functionality for $$\mathscr {F}$$ provided Alice and Bob have the cryptographic resources for active secure two-party classical computation. Our protocol is constructed from the protocol for the same task secure against specious adversaries presented in [4].

[1]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[2]  Imre Csisźar,et al.  The Method of Types , 1998, IEEE Trans. Inf. Theory.

[3]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[4]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[5]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[6]  Louis Salvail,et al.  Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries , 2010, CRYPTO.

[7]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[8]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[9]  O. F. Cook The Method of Types , 1898 .

[10]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[11]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[12]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[13]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  Dominique Unruh,et al.  Universally Composable Quantum Multi-party Computation , 2009, EUROCRYPT.

[16]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[17]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.