Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire.

[1]  S. Grinstein,et al.  Phosphatidylinositol 3-kinase-independent synthesis of PtdIns(3,4)P2 by a phosphotransferase , 2021, bioRxiv.

[2]  Kendal G Cooper,et al.  Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium. , 2021, Cell host & microbe.

[3]  J. Galán Salmonella Typhimurium and inflammation: a pathogen-centric affair , 2021, Nature Reviews Microbiology.

[4]  V. Young,et al.  Salmonella enterica Serovar Typhimurium SPI-1 and SPI-2 Shape the Global Transcriptional Landscape in a Human Intestinal Organoid Model System , 2021, mBio.

[5]  W. Hardt,et al.  Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers , 2021, Proceedings of the National Academy of Sciences.

[6]  W. Hardt,et al.  Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice , 2021, Mucosal Immunology.

[7]  É. Barilleau,et al.  Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium , 2021, BMC microbiology.

[8]  J. Galán,et al.  The Salmonella Effector Protein SopD targets Rab8 to positively and negatively modulate the inflammatory response , 2021, Nature Microbiology.

[9]  Kendal G Cooper,et al.  Regulatory protein HilD stimulates Salmonella Typhimurium invasiveness by promoting smooth swimming via the methyl-accepting chemotaxis protein McpC , 2021, Nature communications.

[10]  P. Hellström,et al.  Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids , 2021, mBio.

[11]  W. Hardt,et al.  Epithelial inflammasomes in the defense against Salmonella gut infection. , 2020, Current opinion in microbiology.

[12]  W. Hardt,et al.  Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium , 2020, PLoS pathogens.

[13]  P. Steffen,et al.  Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion , 2020, Nature Communications.

[14]  Jason G. Smith,et al.  Salmonella enterica Infection of Murine and Human Enteroid-Derived Monolayers Elicits Differential Activation of Epithelium-Intrinsic Inflammasomes , 2020, Infection and Immunity.

[15]  M. Stahl,et al.  Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes , 2020, PLoS pathogens.

[16]  R. Aebersold,et al.  Germ‐free and microbiota‐associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes , 2020, Cellular microbiology.

[17]  D. Bumann,et al.  Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression , 2020, Mucosal Immunology.

[18]  M. Hensel,et al.  Presence of SopE and mode of infection result in increased Salmonella‐containing vacuole damage and cytosolic release during host cell infection by Salmonella enterica , 2019, Cellular microbiology.

[19]  Quentin Giai Gianetto,et al.  Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche , 2019, Cell reports.

[20]  Tregei Starr,et al.  A role for the Salmonella Type III Secretion System 1 in bacterial adaptation to the cytosol of epithelial cells , 2019, Molecular microbiology.

[21]  Yang Wang,et al.  Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network , 2019, Front. Cell. Infect. Microbiol..

[22]  Lin Li,et al.  A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy , 2019, Cell.

[23]  J. Celli,et al.  SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole , 2019, PLoS pathogens.

[24]  W. Hardt,et al.  Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract , 2019, Cell reports.

[25]  W. Hardt,et al.  Barcoded Consortium Infections Resolve Cell Type-Dependent Salmonella enterica Serovar Typhimurium Entry Mechanisms , 2019, mBio.

[26]  Gui-Qiu Hu,et al.  Salmonella Outer Protein B Suppresses Colitis Development via Protecting Cell From Necroptosis , 2019, Front. Cell. Infect. Microbiol..

[27]  R. Wubbolts,et al.  MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes , 2019, PLoS pathogens.

[28]  Shinya Sugimoto,et al.  Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. , 2018, Cell stem cell.

[29]  J. Kamanova,et al.  Salmonella stimulates pro-inflammatory signaling through p21-activated kinases bypassing innate immune receptors , 2018, Nature Microbiology.

[30]  S. Georgeault,et al.  Salmonella Typhimurium Invalidated for the Three Currently Known Invasion Factors Keeps Its Ability to Invade Several Cell Models , 2018, Front. Cell. Infect. Microbiol..

[31]  J. Enninga,et al.  The entry of Salmonella in a distinct tight compartment revealed at high temporal and ultrastructural resolution , 2018, Cellular microbiology.

[32]  M. Hornef,et al.  Minimal SPI1-T3SS effector requirement for Salmonella enterocyte invasion and intracellular proliferation in vivo , 2018, PLoS pathogens.

[33]  P. Velge,et al.  An Updated View on the Rck Invasin of Salmonella: Still Much to Discover , 2017, Front. Cell. Infect. Microbiol..

[34]  L. Knodler,et al.  Controlled Activity of the Salmonella Invasion-Associated Injectisome Reveals Its Intracellular Role in the Cytosolic Population , 2017, mBio.

[35]  Vikash Singh,et al.  Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton , 2017, Small GTPases.

[36]  N. Hansmeier,et al.  Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium , 2017, Scientific Reports.

[37]  Vikash Singh,et al.  Swiss Army Pathogen: The Salmonella Entry Toolkit , 2017, Front. Cell. Infect. Microbiol..

[38]  T. Stradal,et al.  Flagellin phase‐dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation , 2017, Cellular microbiology.

[39]  J. Slauch,et al.  Mechanisms of Salmonella pathogenesis in animal models , 2017, Human and ecological risk assessment : HERA.

[40]  Lu Feng,et al.  Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion , 2017, PLoS pathogens.

[41]  I. Brodsky,et al.  NAIP‐NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL‐18 Release via Activation of Caspase‐1 and ‐8 , 2017, Immunity.

[42]  Kendal G Cooper,et al.  A second wave of Salmonella T3SS1 activity prolongs the lifespan of infected epithelial cells , 2017, PLoS pathogens.

[43]  Gunnar C. Hansson,et al.  Immunological aspects of intestinal mucus and mucins , 2016, Nature Reviews Immunology.

[44]  Suying Wang,et al.  The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria. , 2016, Biochemical and biophysical research communications.

[45]  N. Beerenwinkel,et al.  A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion , 2016, PloS one.

[46]  E. Reiter,et al.  Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck–dependent invasion , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  Menghan Li,et al.  Dual 4‐ and 5‐phosphatase activities regulate SopB‐dependent phosphoinositide dynamics to promote bacterial entry , 2016, Cellular microbiology.

[48]  P. Dersch,et al.  Regulatory principles governing Salmonella and Yersinia virulence , 2015, Front. Microbiol..

[49]  G. Dougan,et al.  Interaction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells , 2015, Infection and Immunity.

[50]  Xun Ai,et al.  Bacterial protein AvrA stabilizes intestinal epithelial tight junctions via blockage of the C-Jun N-terminal kinase pathway , 2015, Tissue barriers.

[51]  M. Prevost,et al.  Apical Invasion of Intestinal Epithelial Cells by Salmonella typhimurium Requires Villin to Remodel the Brush Border Actin Cytoskeleton , 2015, Cell host & microbe.

[52]  W. Hardt,et al.  The Salmonella Typhimurium effector protein SopE transiently localizes to the early SCV and contributes to intracellular replication , 2014, Cellular microbiology.

[53]  P. Li,et al.  Inflammatory caspases are innate immune receptors for intracellular LPS , 2014, Nature.

[54]  M. Hornef,et al.  Age-Dependent Enterocyte Invasion and Microcolony Formation by Salmonella , 2014, PLoS pathogens.

[55]  W. Hardt,et al.  Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. , 2014, Cell host & microbe.

[56]  J. Celli,et al.  Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. , 2014, Cell host & microbe.

[57]  H. R. Payne,et al.  Spatial Segregation of Virulence Gene Expression during Acute Enteric Infection with Salmonella enterica serovar Typhimurium , 2014, mBio.

[58]  J. Karp,et al.  Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny , 2013, Nature Methods.

[59]  M. Fessler,et al.  Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase , 2013, Journal of Cell Science.

[60]  S. Winter,et al.  Manipulation of small Rho GTPases is a pathogen-induced process detected by Nod1 , 2013, Nature.

[61]  Roland R. Regoes,et al.  Stabilization of cooperative virulence by the expression of an avirulent phenotype , 2013, Nature.

[62]  E. Bottreau,et al.  Involvement of c-Src Tyrosine Kinase Upstream of Class I Phosphatidylinositol (PI) 3-Kinases in Salmonella Enteritidis Rck Protein-mediated Invasion , 2012, The Journal of Biological Chemistry.

[63]  S. Leppla,et al.  Rapid induction of inflammatory lipid mediators by the inflammasome in vivo , 2012, Nature.

[64]  Patrick Jenny,et al.  Near Surface Swimming of Salmonella Typhimurium Explains Target-Site Selection and Cooperative Invasion , 2012, PLoS pathogens.

[65]  P. Cossart,et al.  Salmonella enteritidis Rck‐mediated invasion requires activation of Rac1, which is dependent on the class I PI 3‐kinases‐Akt signaling pathway , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  Peter J Hume,et al.  Salmonella Virulence Effector SopE and Host GEF ARNO Cooperate to Recruit and Activate WAVE to Trigger Bacterial Invasion , 2012, Cell host & microbe.

[67]  B. Stecher,et al.  The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response , 2012, Immunological reviews.

[68]  S. Winter,et al.  A Salmonella Virulence Factor Activates the NOD1/NOD2 Signaling Pathway , 2011, mBio.

[69]  B. McCormick,et al.  Salmonella effectors: important players modulating host cell function during infection , 2011, Cellular microbiology.

[70]  B. McCormick,et al.  Salmonella effector proteins and host-cell responses , 2011, Cellular and Molecular Life Sciences.

[71]  Matthias Heinemann,et al.  The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1 , 2011, PLoS pathogens.

[72]  Balamurugan Periaswamy,et al.  Salmonella enterica Serovar Typhimurium Binds to HeLa Cells via Fim-Mediated Reversible Adhesion and Irreversible Type Three Secretion System 1-Mediated Docking , 2010, Infection and Immunity.

[73]  A. Maldonado-Contreras,et al.  Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3 , 2010, Science.

[74]  J. Roth,et al.  Gut inflammation provides a respiratory electron acceptor for Salmonella , 2010, Nature.

[75]  E. Derivery,et al.  Molecular dissection of Salmonella‐induced membrane ruffling versus invasion , 2010, Cellular microbiology.

[76]  M. Heikenwalder,et al.  The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. , 2009, Cell host & microbe.

[77]  J. Galán,et al.  Salmonella enterica Serovar Typhimurium Pathogenicity Island 1-Encoded Type III Secretion System Translocases Mediate Intimate Attachment to Nonphagocytic Cells , 2009, Infection and Immunity.

[78]  M. Jepson,et al.  Regulation of Salmonella‐induced membrane ruffling by SipA differs in strains lacking other effectors , 2009, Cellular microbiology.

[79]  E. McGhie,et al.  Salmonella takes control: effector-driven manipulation of the host , 2009, Current opinion in microbiology.

[80]  A. Bäumler,et al.  Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α(1,2)fucose residues in the cecal mucosa , 2009, Molecular microbiology.

[81]  Stephen G. J. Smith,et al.  The PagN protein of Salmonella enterica serovar Typhimurium is an adhesin and invasin , 2008, BMC Microbiology.

[82]  Yinglin Xia,et al.  Salmonella Type III Effector AvrA Stabilizes Cell Tight Junctions to Inhibit Inflammation in Intestinal Epithelial Cells , 2008, PloS one.

[83]  V. Koronakis,et al.  Deciphering Interplay between Salmonella Invasion Effectors , 2008, PLoS pathogens.

[84]  O. Steele‐Mortimer The Salmonella-containing vacuole: moving with the times. , 2008, Current opinion in microbiology.

[85]  Naomi Ohnishi,et al.  Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse , 2008, Proceedings of the National Academy of Sciences.

[86]  Jun Sun,et al.  Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. , 2007, The American journal of pathology.

[87]  G. Dougan,et al.  Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota , 2007, PLoS biology.

[88]  B. Stecher,et al.  Salmonella Pathogenicity Island 4 encodes a giant non‐fimbrial adhesin and the cognate type 1 secretion system , 2007, Cellular microbiology.

[89]  R. Hayward,et al.  Salmonella SPI1 Effector SipA Persists after Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and Intracellular Replication , 2007, Cell host & microbe.

[90]  J. Slauch,et al.  Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. , 2007, Current opinion in microbiology.

[91]  N. F. Brown,et al.  Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function , 2006, Cellular microbiology.

[92]  T. Hughes,et al.  Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions , 2006, Cell.

[93]  A. Bäumler,et al.  The Salmonella enterica Serotype Typhimurium lpf, bcf, stb, stc, std, and sth Fimbrial Operons Are Required for Intestinal Persistence in Mice , 2005, Infection and Immunity.

[94]  S. Akira,et al.  The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow Salmonella Serovar typhimurium to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms1 , 2005, The Journal of Immunology.

[95]  H. Andrews-Polymenis,et al.  SipA, SopA, SopB, SopD, and SopE2 Contribute to Salmonella enterica Serotype Typhimurium Invasion of Epithelial Cells , 2005, Infection and Immunity.

[96]  R. Hayward,et al.  Control of actin turnover by a salmonella invasion protein. , 2004, Molecular cell.

[97]  D. Meyerholz,et al.  Comparison of Early Ileal Invasion by Salmonella enterica Serovars Choleraesuis and Typhimurium , 2003, Veterinary pathology.

[98]  D. Podolsky,et al.  CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. , 2003, Gastroenterology.

[99]  D. Meyerholz,et al.  Early Epithelial Invasion by Salmonella enterica Serovar Typhimurium DT104 in the Swine Ileum , 2002, Veterinary pathology.

[100]  R. L. Santos,et al.  Morphologic and Molecular Characterization of Salmonella typhimurium Infection in Neonatal Calves , 2002, Veterinary pathology.

[101]  M. Aepfelbacher,et al.  SopE and SopE2 from Salmonella typhimurium Activate Different Sets of RhoGTPases of the Host Cell* , 2001, The Journal of Biological Chemistry.

[102]  B. Kenny,et al.  Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells , 2001, Cellular microbiology.

[103]  E. McGhie,et al.  Cooperation between actin‐binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin , 2001, The EMBO journal.

[104]  Y. Ogura,et al.  Human Nod1 Confers Responsiveness to Bacterial Lipopolysaccharides* , 2001, The Journal of Biological Chemistry.

[105]  L. Hernandez,et al.  A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization , 2001, Molecular microbiology.

[106]  W. Hardt,et al.  Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell , 2000, Molecular microbiology.

[107]  R. Hayward,et al.  Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella , 1999, The EMBO journal.

[108]  J. Galán,et al.  Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. , 1999, Science.

[109]  M. Jepson,et al.  Studying M cells and their role in infection. , 1998, Trends in microbiology.

[110]  K. Schuebel,et al.  S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells , 1998, Cell.

[111]  T. Wallis,et al.  The Early Dynamic Response of the Calf Ileal Epithelium to Salmonella typhimurium , 1997, Veterinary pathology.

[112]  T. Wallis,et al.  Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene , 1995, Infection and immunity.

[113]  B. Finlay,et al.  Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[114]  B. Finlay,et al.  Intracellular replication is essential for the virulence of Salmonella typhimurium. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[115]  B. Finlay,et al.  Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. , 1991, Journal of cell science.

[116]  J. Galán,et al.  Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. Takeuchi Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. , 1967, The American journal of pathology.