Special extended Nyström tree theory for ERKN methods
暂无分享,去创建一个
[1] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[2] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[3] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[4] J. Butcher. The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .
[5] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[6] Xinyuan Wu,et al. Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..
[7] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .
[8] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[9] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[10] J. M. Franco. Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .
[11] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[12] R. D. Vogelaere,et al. Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .
[13] D. G. Bettis. Runge-Kutta algorithms for oscillatory problems , 1979 .
[14] On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .
[15] H. Van de Vyver,et al. A symplectic Runge-Kutta-Nyström method with minimal phase-lag , 2007 .
[16] Bin Wang,et al. ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..
[17] Jianlin Xia,et al. Order conditions for ARKN methods solving oscillatory systems , 2009, Comput. Phys. Commun..
[18] Fabian Immler,et al. Numerical Analysis of Ordinary Differential Equations , 2013 .
[19] Jianlin Xia,et al. Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .
[20] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[21] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[22] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[23] J. M. Franco. Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..
[24] Y. Suris,et al. The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .
[25] Jesús Vigo-Aguiar,et al. Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..
[26] Matthias J. Ehrhardt,et al. Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .
[27] Robert D. Skeel,et al. Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..
[28] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[29] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[30] Hans Van de Vyver,et al. A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .
[31] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[32] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[33] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[34] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[35] J. M. Franco. New methods for oscillatory systems based on ARKN methods , 2006 .
[36] John P. Coleman,et al. Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .
[37] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[38] Pablo Martín,et al. A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.
[39] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .
[40] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[41] Wei Shi,et al. Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems , 2012, Comput. Phys. Commun..