Special extended Nyström tree theory for ERKN methods

The aim of this paper is to develop a unified special extended Nystrom tree (SEN-tree) theory which provides a theoretical framework for the order conditions of multidimensional extended Runge-Kutta-Nystrom (ERKN) methods proposed by X. Wu et al. (Wu et al., 2010). The new SEN tree theory is complete and consistent, which has overcome the drawback of the bi-coloured tree theory in H. Yang et al.'s work (Yang et al., 2009) where two "branch sets" have to be constructed for the true solutions and for the numerical solutions, respectively. A systematic and uniform special extended Nystrom tree (SEN-tree) theory.Order conditions for extended Runge-Kutta-Nystrom (ERKN) methods.New simplifying assumptions for the coefficients of ERKN methods.Practical ERKN schemes with numerical illustrations.

[1]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[2]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[3]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[4]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[5]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[6]  Xinyuan Wu,et al.  Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..

[7]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[8]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[9]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[10]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[11]  M. J,et al.  RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .

[12]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[13]  D. G. Bettis Runge-Kutta algorithms for oscillatory problems , 1979 .

[14]  On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .

[15]  H. Van de Vyver,et al.  A symplectic Runge-Kutta-Nyström method with minimal phase-lag , 2007 .

[16]  Bin Wang,et al.  ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..

[17]  Jianlin Xia,et al.  Order conditions for ARKN methods solving oscillatory systems , 2009, Comput. Phys. Commun..

[18]  Fabian Immler,et al.  Numerical Analysis of Ordinary Differential Equations , 2013 .

[19]  Jianlin Xia,et al.  Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .

[20]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[21]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[22]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[23]  J. M. Franco Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems , 2007, Comput. Phys. Commun..

[24]  Y. Suris,et al.  The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .

[25]  Jesús Vigo-Aguiar,et al.  Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..

[26]  Matthias J. Ehrhardt,et al.  Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .

[27]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[28]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[29]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[30]  Hans Van de Vyver,et al.  A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .

[31]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[32]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[33]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[34]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[35]  J. M. Franco New methods for oscillatory systems based on ARKN methods , 2006 .

[36]  John P. Coleman,et al.  Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .

[37]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[38]  Pablo Martín,et al.  A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.

[39]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[40]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[41]  Wei Shi,et al.  Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems , 2012, Comput. Phys. Commun..