Structural and functional recovery from early monocular deprivation in adult rats.

Visual deficits caused by abnormal visual experience during development are hard to recover in adult animals. Removal of chondroitin sulfate proteoglycans from the mature extracellular matrix with chondroitinase ABC promotes plasticity in the adult visual cortex. We tested whether chondroitinase ABC treatment of adult rats facilitates anatomical, functional, and behavioral recovery from the effects of a period of monocular deprivation initiated during the critical period for monocular deprivation. We found that chondroitinase ABC treatment coupled with reverse lid-suturing causes a complete recovery of ocular dominance, visual acuity, and dendritic spine density in adult rats. Thus, manipulations of the extracellular matrix can be used to promote functional recovery in the adult cortex.

[1]  L. Maffei,et al.  Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation , 1994, Vision Research.

[2]  N. Daw,et al.  Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor , 2005, Science.

[3]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[4]  L. Maffei,et al.  Temporal Aspects of Contrast Visual Evoked Potentials in the Pigmented Rat: Effect of Dark Rearing , 1997, Vision Research.

[5]  D. Mitchell The extent of visual recovery from early monocular or binocular visual deprivation in kittens. , 1988, The Journal of physiology.

[6]  L. Maffei,et al.  Molecular basis of plasticity in the visual cortex , 2003, Trends in Neurosciences.

[7]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[8]  J. Fawcett,et al.  The glial scar and central nervous system repair , 1999, Brain Research Bulletin.

[9]  J. Lichtman,et al.  Multicolor “DiOlistic” Labeling of the Nervous System Using Lipophilic Dye Combinations , 2000, Neuron.

[10]  D. Mitchell,et al.  The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia , 2002, Clinical & experimental optometry.

[11]  Nobuko Mataga,et al.  Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator , 2004, Neuron.

[12]  M. Bear,et al.  NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex , 2003, Neuron.

[13]  Jerry Silver,et al.  Regeneration beyond the glial scar , 2004, Nature Reviews Neuroscience.

[14]  C. Blakemore,et al.  Correlated binocular activity guides recovery from monocular deprivation , 2002, Nature.

[15]  L. Maffei,et al.  Nerve growth factor prevents the amblyopic effects of monocular deprivation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Rittenhouse,et al.  Monocular deprivation induces homosynaptic long-term depression in visual cortex , 1999, Nature.

[17]  F. Valverde,et al.  Apical dendritic spines of the visual cortex and light deprivation in the mouse , 2004, Experimental Brain Research.

[18]  R. Douglas,et al.  Experience‐dependent plasticity of visual acuity in rats , 2000, The European journal of neuroscience.

[19]  James W. Fawcett,et al.  Chondroitinase ABC promotes functional recovery after spinal cord injury , 2002, Nature.

[20]  M. Fagiolini,et al.  Specific GABAA Circuits for Visual Cortical Plasticity , 2004, Science.

[21]  A. Bringmann,et al.  Acute and long-lasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain , 1998, Experimental Brain Research.

[22]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[23]  Mriganka Sur,et al.  Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation , 2004, Neuron.

[24]  C. Blakemore,et al.  Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period , 1974, The Journal of physiology.

[25]  R. Yuste,et al.  Developmental regulation of spine and filopodial motility in primary visual cortex: reduced effects of activity and sensory deprivation. , 2004, Journal of neurobiology.

[26]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[27]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Kalb,et al.  Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. , 1990, Cold Spring Harbor symposia on quantitative biology.

[29]  M. Stryker,et al.  Local GABA circuit control of experience-dependent plasticity in developing visual cortex. , 1998, Science.

[30]  J. Movshon,et al.  Effects of early unilateral blur on the macaque's visual system. II. Anatomical observations , 1987 .

[31]  L. Maffei,et al.  BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex , 1999, Cell.

[32]  W. Härtig,et al.  Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. , 1992, Neuroreport.

[33]  Mark F Bear,et al.  A Morphological Correlate of Synaptic Scaling in Visual Cortex , 2022 .

[34]  A. Bringmann,et al.  Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABAA receptor α1 subunit form a unique entity in rat cerebral cortex , 2003, Experimental Neurology.

[35]  L. Maffei,et al.  Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex , 2002, Science.

[36]  Glen T Prusky,et al.  Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity. , 2004, Journal of neurophysiology.