The embedding dimension of Laplacian eigenfunction maps

Any closed, connected Riemannian manifold $M$ can be smoothly embedded by its Laplacian eigenfunction maps into $\mathbb{R}^m$ for some $m$. We call the smallest such $m$ the maximal embedding dimension of $M$. We show that the maximal embedding dimension of $M$ is bounded from above by a constant depending only on the dimension of $M$, a lower bound for injectivity radius, a lower bound for Ricci curvature, and a volume bound. We interpret this result for the case of surfaces isometrically immersed in $\mathbb{R}^3$, showing that the maximal embedding dimension only depends on bounds for the Gaussian curvature, mean curvature, and surface area. Furthermore, we consider the relevance of these results for shape registration.

[1]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[2]  M. Maggioni,et al.  Universal Local Parametrizations via Heat Kernels and Eigenfunctions of the Laplacian , 2007, 0709.1975.

[3]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[4]  Jeff Cheeger,et al.  $C^\alpha$-compactness for manifolds with Ricci curvature and injectivity radius bounded below , 1992 .

[5]  A. Grigor’yan,et al.  The Heat Kernel on Hyperbolic Space , 1998 .

[6]  Ying Wang,et al.  Registration of contours of brain structures through a heat-kernel representation of shape , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  E. Davies,et al.  Heat Kernel Bounds on Hyperbolic Space and Kleinian Groups , 1988 .

[8]  P. Bérard,et al.  Volume des ensembles nodaux des fonctions propres du laplacien , 1985 .

[9]  I. Kh. Sabitov,et al.  The connections between the order of smoothness of a surface and its metric , 1976 .

[10]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[12]  Edwin R. Hancock,et al.  Spectral Correspondence for Deformed Point-Set Matching , 2000, AMDO.

[13]  Radu Horaud,et al.  Shape matching based on diffusion embedding and on mutual isometric consistency , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[14]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[15]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[16]  Xiuwen Liu,et al.  Scale-Space Spectral Representation of Shape , 2010, 2010 20th International Conference on Pattern Recognition.

[17]  A. Grigor’yan Heat Kernel and Analysis on Manifolds , 2012 .

[18]  Xiuwen Liu,et al.  Kernel functions for robust 3D surface registration with spectral embeddings , 2008, 2008 19th International Conference on Pattern Recognition.

[19]  Edwin R. Hancock,et al.  Heat Kernels, Manifolds and Graph Embedding , 2004, SSPR/SPR.

[20]  Dennis DeTurck,et al.  Some regularity theorems in riemannian geometry , 1981 .

[21]  Edwin R. Hancock,et al.  Measuring Graph Similarity Using Spectral Geometry , 2008, ICIAR.

[22]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .

[23]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[24]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[25]  S. Zelditch LOCAL AND GLOBAL ANALYSIS OF EIGENFUNCTIONS ON RIEMANNIAN MANIFOLDS , 2009 .

[26]  A. Kasue,et al.  SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS, II , 1994 .

[27]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[28]  J. Cheeger FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS. , 1970 .

[29]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[30]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[31]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[32]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[33]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[34]  J. Eells EIGENVALUES IN RIEMANNIAN GEOMETRY (Pure and Applied Mathematics: A Series of Monographs and Textbooks, 115) , 1985 .

[35]  Hiba Abdallah EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL , 2012 .

[36]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[38]  Ling Huang,et al.  An Analysis of the Convergence of Graph Laplacians , 2010, ICML.

[39]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[40]  A. Kasue,et al.  Convergence of Riemannian Manifolds and Laplace Operators, II , 2006 .

[41]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[42]  Atsushi Kasue,et al.  Convergence of Riemannian manifolds and Laplace operators. I@@@Convergence des variétés riemanniennes et des opérateurs laplaciens. I , 2002 .

[43]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[44]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[45]  Kenji Fukaya,et al.  Collapsing of Riemannian manifolds and eigenvalues of Laplace operator , 1987 .

[46]  Hao Zhang,et al.  Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..

[47]  Peter M. Topping,et al.  Relating diameter and mean curvature for submanifolds of Euclidean space , 2008 .

[48]  Yukio Ogura,et al.  CONVERGENCE OF HEAT KERNELS ON A COMPACT MANIFOLD , 1997 .

[49]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[50]  F. Mémoli,et al.  A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .

[51]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .