Towards Bloom filter-based indexing of iris biometric data

Conventional biometric identification systems require exhaustive 1 : N comparisons in order to identify biometric probes, i.e. comparison time frequently dominates the overall computational workload. Biometric database indexing represents a challenging task since biometric data is fuzzy and does not exhibit any natural sorting order. In this paper we present a preliminary study on the feasibility of applying Bloom filters for the purpose of iris biometric database indexing. It is shown, that by constructing a binary tree data structure of Bloom filters extracted from binary iris biometric templates (iris-codes) the search space can be reduced to O(logN). In experiments, which are carried out on a database of N = 256 classes, biometric performance (accuracy) is maintained for different conventional identification systems. Further, perspectives on how to employ the proposed scheme on large-scale databases are given.

[1]  Arun Ross,et al.  Indexing iris images using the Burrows-Wheeler Transform , 2010, 2010 IEEE International Workshop on Information Forensics and Security.

[2]  Harald Baier,et al.  On the database lookup problem of approximate matching , 2014, Digit. Investig..

[3]  James K. Mullin,et al.  Optimal Semijoins for Distributed Database Systems , 1990, IEEE Trans. Software Eng..

[4]  Patrick J. Flynn,et al.  Image understanding for iris biometrics: A survey , 2008, Comput. Vis. Image Underst..

[5]  Andreas Uhl,et al.  A survey on biometric cryptosystems and cancelable biometrics , 2011, EURASIP J. Inf. Secur..

[6]  Phalguni Gupta,et al.  Indexing Iris Biometric Database Using Energy Histogram of DCT Subbands , 2009, IC3.

[7]  Arun Ross,et al.  Indexing iris images , 2008, 2008 19th International Conference on Pattern Recognition.

[8]  Nalini Ratha,et al.  An efficient, two-stage iris recognition system , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[9]  Libor Masek,et al.  Recognition of Human Iris Patterns for Biometric Identification , 2003 .

[10]  Christoph Busch,et al.  On application of bloom filters to iris biometrics , 2014, IET Biom..

[11]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[12]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  Arun Ross,et al.  2D ear classification based on unsupervised clustering , 2014, IEEE International Joint Conference on Biometrics.

[14]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Anil K. Jain,et al.  A Real-Time Matching System for Large Fingerprint Databases , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Dexin Zhang,et al.  Efficient iris recognition by characterizing key local variations , 2004, IEEE Transactions on Image Processing.

[17]  Harald Baier,et al.  An Efficient Similarity Digests Database Lookup - A Logarithmic Divide & Conquer Approach , 2014, J. Digit. Forensics Secur. Law.

[18]  Feng Hao,et al.  A Fast Search Algorithm for a Large Fuzzy Database , 2008, IEEE Transactions on Information Forensics and Security.

[19]  Andreas Uhl,et al.  Weighted adaptive Hough and ellipsopolar transforms for real-time iris segmentation , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[20]  Christian Rathgeb,et al.  Efficient two-stage speaker identification based on universal background models , 2014, 2014 International Conference of the Biometrics Special Interest Group (BIOSIG).

[21]  Andreas Uhl,et al.  Iris-Biometric Hash Generation for Biometric Database Indexing , 2010, 2010 20th International Conference on Pattern Recognition.

[22]  Andrei Broder,et al.  Network Applications of Bloom Filters: A Survey , 2004, Internet Math..