A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime
暂无分享,去创建一个
[1] Leo Storme,et al. Small Minimal Blocking Sets in PG(2, q3) , 2002, Eur. J. Comb..
[2] Zsuzsa Weiner. Small point sets of PG(n,q) intersecting eachk-space in 1 modulo points , 2005 .
[3] T. Szonyi,et al. Small point sets of PG(n, p3h) intersecting each line in 1 mod ph points , 2010 .
[4] Klaus Metsch,et al. Small point sets of PG(n, q3) intersecting each k-subspace in 1 mod q points , 2010, Des. Codes Cryptogr..
[5] Péter Sziklai,et al. On small blocking sets and their linearity , 2008, J. Comb. Theory, Ser. A.
[6] Michel Lavrauw,et al. Scattered spaces with respect to spreads, and eggs in finite projective spaces : Scattered subspaces with respect to spreads, and eggs in finite projective spaces , 2001 .
[7] Michel Lavrauw,et al. On linear sets on a projective line , 2010, Des. Codes Cryptogr..
[8] Tamás Szonyi,et al. Small Blocking Sets in Higher Dimensions , 2001, J. Comb. Theory, Ser. A.
[9] Guglielmo Lunardon,et al. Normal Spreads , 1999 .
[10] Klaus Metsch,et al. Partial t-Spreads in PG(2t+1,q) , 1999 .
[11] Leo Storme,et al. On 1-Blocking Sets in PG(n,q), n ≥ 3 , 2000, Des. Codes Cryptogr..