A bijection for rooted maps on general surfaces

We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, that is orientable and non-orientable as well. This general construction requires new ideas and is more delicate than the special orientable case, but it carries the same information. In particular, it leads to a uniform combinatorial interpretation of the counting exponent 5 ( h - 1 ) 2 for both orientable and non-orientable rooted connected maps of Euler characteristic 2 - 2 h , and of the algebraicity of their generating functions, similar to the one previously obtained in the orientable case via the Marcus-Schaeffer bijection. It also shows that the renormalization factor n 1 / 4 for distances between vertices is universal for maps on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation on any fixed surface converge in distribution when the size n tends to infinity. Finally, we extend the Miermont and Ambjorn-Budd bijections to the general setting of all surfaces. Our construction opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.

[1]  Jack polynomials and orientability generating series of maps , 2013, 1301.6531.

[3]  S. Carrell The Non-Orientable Map Asymptotics Constant $p_g$ , 2014, 1406.1760.

[4]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[5]  Zhicheng Gao The number of degree restricted maps on general surfaces , 1993, Discret. Math..

[6]  Ian P. Goulden,et al.  Maps in Locally Orientable Surfaces and Integrals Over Real Symmetric Surfaces , 1997, Canadian Journal of Mathematics.

[7]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.

[8]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[9]  Jérémie Bettinelli The topology of scaling limits of positive genus random quadrangulations , 2010, 1012.3726.

[10]  J. Gall A conditional limit theorem for tree-indexed random walk , 2006 .

[11]  L. Croix,et al.  The combinatorics of the Jack parameter and the genus series for topological maps , 2009 .

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[14]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[15]  Ian P. Goulden,et al.  Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions , 1996 .

[16]  Dock Bumpers,et al.  Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[17]  Edward A. Bender,et al.  The Map Asymptotics Constant tg , 2008, Electron. J. Comb..

[18]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[19]  Olivier Bernardi,et al.  An analogue of the Harer-Zagier formula for unicellular maps on general surfaces , 2010, Adv. Appl. Math..

[20]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[21]  Edward A. Bender,et al.  The asymptotic number of rooted maps on a surface , 1986, J. Comb. Theory, Ser. A.

[22]  A. Morales,et al.  Bijective evaluation of the connection coefficients of the double coset algebra , 2010, 1011.5001.

[23]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[24]  Guillaume Chapuy,et al.  Counting unicellular maps on non-orientable surfaces , 2010, Adv. Appl. Math..

[25]  Emmanuel Jacob,et al.  The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection , 2013, 1312.5842.

[26]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[27]  R. Lathe Phd by thesis , 1988, Nature.

[28]  Didier Arquès,et al.  Counting rooted maps on a surface , 2000, Theor. Comput. Sci..

[29]  Éric Fusy,et al.  Unified bijections for maps with prescribed degrees and girth , 2011, J. Comb. Theory, Ser. A.

[30]  Une bijection simple pour les cartes orientables , 2001 .

[31]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[32]  Jan Ambjorn,et al.  Trees and spatial topology change in CDT , 2013, 1302.1763.

[33]  Guillaume Chapuy,et al.  Combinatoire bijective des cartes de genre supérieur , 2008 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Jérémie Bettinelli,et al.  Scaling Limits for Random Quadrangulations of Positive Genus , 2010, 1002.3682.

[36]  B. M. Fulk MATH , 1992 .

[37]  Guillaume Chapuy,et al.  Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.

[38]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[39]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[40]  Ian P. Goulden,et al.  Maps in Locally Orientable Surfaces, the Double Coset Algebra, and Zonal Polynomials , 1996, Canadian Journal of Mathematics.

[41]  Dominique Poulalhon,et al.  A Generic Method for Bijections between Blossoming Trees and Planar Maps , 2013, Electron. J. Comb..