Composite forecasting approach, application for next-day electricity price forecasting

[1]  G. P. Girish,et al.  Artificial Neural Networks for Spot Electricity Price Forecasting: A Review , 2015 .

[2]  Roland De Guio,et al.  Modelling and uncertainties in integrated energy planning , 2015 .

[3]  Rob J. Hyndman,et al.  A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction , 2015 .

[4]  R. Weron Electricity price forecasting: A review of the state-of-the-art with a look into the future , 2014 .

[5]  Chi-Jie Lu,et al.  Sales forecasting of computer products based on variable selection scheme and support vector regression , 2014, Neurocomputing.

[6]  N. Kumarappan,et al.  Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT , 2014 .

[7]  Jakub Nowotarski,et al.  An Empirical Comparison of Alternate Schemes for Combining Electricity Spot Price Forecasts , 2013 .

[8]  R. Huisman,et al.  A history of European electricity day-ahead prices , 2013 .

[9]  Jing Shi,et al.  Applying ARMA–GARCH approaches to forecasting short-term electricity prices , 2013 .

[10]  Francesco Lisi,et al.  Combining day-ahead forecasts for British electricity prices , 2013 .

[11]  Kevin Leyton-Brown,et al.  Auto-WEKA: Automated Selection and Hyper-Parameter Optimization of Classification Algorithms , 2012, ArXiv.

[12]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[13]  Sven F. Crone,et al.  Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction , 2011 .

[14]  Deepa Singhal,et al.  Electricity price forecasting using artificial neural networks , 2011 .

[15]  Jianzhou Wang,et al.  Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling , 2010 .

[16]  Desheng Dash Wu,et al.  A soft computing system for day-ahead electricity price forecasting , 2010, Appl. Soft Comput..

[17]  K. Wallis,et al.  A Simple Explanation of the Forecast Combination Puzzle , 2009 .

[18]  Ashwani Kumar,et al.  Electricity price forecasting in deregulated markets: A review and evaluation , 2009 .

[19]  J. E. Payne,et al.  Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models , 2008 .

[20]  Farshid Keynia,et al.  Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method , 2008 .

[21]  A. Kazemi,et al.  Day-ahead price forecasting in restructured power systems using artificial neural networks , 2008 .

[22]  J. Scott Armstrong,et al.  A Commentary on Error Measures , 2008 .

[23]  A. Daneshi,et al.  Price forecasting in deregulated electricity markets - a bibliographical survey , 2008, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.

[24]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[25]  T. Senjyu,et al.  A Novel Approach to Forecast Electricity Price for PJM Using Neural Network and Similar Days Method , 2007, IEEE Transactions on Power Systems.

[26]  V. Mendes,et al.  Short-term electricity prices forecasting in a competitive market: A neural network approach , 2007 .

[27]  Shu Fan,et al.  Next-day electricity-price forecasting using a hybrid network , 2007 .

[28]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[29]  A. Gil,et al.  Forecasting of electricity prices with neural networks , 2006 .

[30]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[31]  N. Amjady,et al.  Energy price forecasting - problems and proposals for such predictions , 2006 .

[32]  Mark W. Watson,et al.  Chapter 10 Forecasting with Many Predictors , 2006 .

[33]  Kin Keung Lai,et al.  Double Robustness Analysis for Determining Optimal Feedforward Neural Network Architecture , 2005, ICNC.

[34]  Zuyi Li,et al.  Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets , 2004 .

[35]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[36]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[37]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[38]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[39]  J. Contreras,et al.  Forecasting Next-Day Electricity Prices by Time Series Models , 2002, IEEE Power Engineering Review.

[40]  Rob J Hyndman,et al.  A state space framework for automatic forecasting using exponential smoothing methods , 2002 .

[41]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[42]  Zuyi Li,et al.  Market Operations in Electric Power Systems : Forecasting, Scheduling, and Risk Management , 2002 .

[43]  Guy Melard,et al.  Automatic ARIMA modeling including interventions, using time series expert software , 2000 .

[44]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[45]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[46]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[47]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[48]  R. C. Williamson,et al.  Support vector regression with automatic accuracy control. , 1998 .

[49]  Fred Collopy,et al.  How effective are neural networks at forecasting and prediction? A review and evaluation , 1998 .

[50]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[51]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[52]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[53]  Carl G. Looney,et al.  Advances in Feedforward Neural Networks: Demystifying Knowledge Acquiring Black Boxes , 1996, IEEE Trans. Knowl. Data Eng..

[54]  Chris Chatfield,et al.  Calculating Interval Forecasts , 1993 .

[55]  Jure Zupan,et al.  NEURONALE NETZE IN DER CHEMIE , 1993 .

[56]  C. Chatfield,et al.  The M2-competition: A real-time judgmentally based forecasting study , 1993 .

[57]  Arnold Zellner,et al.  To combine or not to combine? Issues of combining forecasts , 1992 .

[58]  Dennis A. Ahlburg,et al.  Error measures and the choice of a forecast method , 1992 .

[59]  Robert Fildes,et al.  The evaluation of extrapolative forecasting methods , 1992 .

[60]  Fred L. Collopy,et al.  Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons , 1992 .

[61]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[62]  Everette S. Gardner,et al.  A Simple Method of Computing Prediction Intervals for Time Series Forecasts , 1988 .

[63]  Chris Chatfield,et al.  What is the ‘best’ method of forecasting? , 1988 .

[64]  Frederick Mosteller,et al.  Understanding Robust and Exploratory Data Analysis. , 1983 .

[65]  R. L. Winkler,et al.  Averages of Forecasts: Some Empirical Results , 1983 .

[66]  Robert L. Winkler,et al.  The accuracy of extrapolation (time series) methods: Results of a forecasting competition , 1982 .

[67]  J. Dickinson Some Comments on the Combination of Forecasts , 1975 .

[68]  J. Dickinson Some Statistical Results in the Combination of Forecasts , 1973 .

[69]  W. H. Williams,et al.  A Simple Method for the Construction of Empirical Confidence Limits for Economic Forecasts , 1971 .

[70]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[71]  D. J. Reid Combining Three Estimates of Gross Domestic Product , 1968 .