Mapping quantitative trait loci in humans: achievements and limitations.

Recent advances in statistical methods and genomic technologies have ushered in a new era in mapping clinically important quantitative traits. However, many refinements and novel statistical approaches are required to enable greater successes in this mapping. The possible impact of recent findings pertaining to the structure of the human genome on efforts to map quantitative traits is yet unclear.

[1]  C. Fenster,et al.  Quantitative trait locus analyses and the study of evolutionary process , 2004, Molecular ecology.

[2]  P. Visscher,et al.  Theoretical and empirical power of regression and maximum-likelihood methods to map quantitative trait loci in general pedigrees. , 2004, American journal of human genetics.

[3]  R. Elston,et al.  The investigation of linkage between a quantitative trait and a marker locus , 1972, Behavior genetics.

[4]  L R Cardon,et al.  The power to detect linkage disequilibrium with quantitative traits in selected samples. , 2001, American journal of human genetics.

[5]  The phenotypic difference discards sib-pair QTL linkage information. , 1997 .

[6]  K Lange,et al.  Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. , 1996, American journal of human genetics.

[7]  K. P. Donnelly,et al.  The probability that related individuals share some section of genome identical by descent. , 1983, Theoretical population biology.

[8]  D. Allison,et al.  Testing the robustness of the new Haseman-Elston quantitative-trait loci-mapping procedure. , 2000, American journal of human genetics.

[9]  C. Amos Robust variance-components approach for assessing genetic linkage in pedigrees. , 1994, American journal of human genetics.

[10]  Shaun Purcell,et al.  Powerful regression-based quantitative-trait linkage analysis of general pedigrees. , 2002, American journal of human genetics.

[11]  D. Allison,et al.  Effect of Winsorization on Power and Type 1 Error of Variance Components and Related Methods of QTL Detection , 2004, Behavior genetics.

[12]  Y. Chagnon,et al.  A genome-wide scan for abdominal fat assessed by computed tomography in the Québec Family Study. , 2001, Diabetes.

[13]  W. Forrest Weighting Improves the ‘New Haseman-Elston’ Method , 2001, Human Heredity.

[14]  L. Cardon,et al.  Population stratification and spurious allelic association , 2003, The Lancet.

[15]  N. Schork,et al.  Linkage disequilibrium analysis of biallelic DNA markers, human quantitative trait loci, and threshold-defined case and control subjects. , 2000, American journal of human genetics.

[16]  Kui Zhang,et al.  Defining haplotype blocks and tag single-nucleotide polymorphisms in the human genome. , 2004, Human molecular genetics.

[17]  Mark Leppert,et al.  Positional Cloning of the Human Quantitative Trait Locus Underlying Taste Sensitivity to Phenylthiocarbamide , 2003, Science.

[18]  G. M. Lathrop,et al.  Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats , 1991, Nature.

[19]  J. C. Houwelingen,et al.  Score test for detecting linkage to quantitative traits , 2002, Genetic epidemiology.

[20]  P. Sham,et al.  Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. , 2000, American journal of human genetics.

[21]  P M Visscher,et al.  Confidence intervals in QTL mapping by bootstrapping. , 1996, Genetics.

[22]  Y. Bossé,et al.  Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Québec Family Studys⃞s⃞ The online version of this article (available at http://www.jlr.org) contains one additional table. Published, JLR Papers in Press, December 16, 2003. DOI 10.1194/jl , 2004, Journal of Lipid Research.

[23]  Gudmundur A. Thorisson,et al.  The International HapMap Project Web site. , 2005, Genome research.

[24]  Tatiana Foroud,et al.  Linkage mapping of beta 2 EEG waves via non‐parametric regression , 2003, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[25]  E. Lander,et al.  Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. , 2001, American journal of human genetics.

[26]  P. O'Connell,et al.  Evidence for linkage of regions on chromosomes 6 and 11 to plasma glucose concentrations in Mexican Americans. , 1996, Genome research.

[27]  L Kruglyak,et al.  A nonparametric approach for mapping quantitative trait loci. , 1995, Genetics.

[28]  W. Frankel,et al.  A major effect QTL determined by multiple genes in epileptic EL mice. , 2000, Genome research.

[29]  D Siegmund,et al.  Mapping quantitative trait loci in oligogenic models. , 2001, Biostatistics.

[30]  C. Li,et al.  The Derivation of Joint Distribution and Correlation between Relatives by the Use of Stochastic Matrices , 1954 .

[31]  J. Blangero,et al.  Power of variance component linkage analysis to detect epistasis , 1997, Genetic Epidemiology.

[32]  J. Blangero,et al.  Effects of genotype‐by‐sex interaction on quantitative trait linkage analysis , 1997, Genetic epidemiology.

[33]  A. Darvasi,et al.  Experimental strategies for the genetic dissection of complex traits in animal models , 1998, Nature Genetics.

[34]  L. Almasy,et al.  Multipoint quantitative-trait linkage analysis in general pedigrees. , 1998, American journal of human genetics.

[35]  P. Majumder,et al.  A two-stage variable-stringency semiparametric method for mapping quantitative-trait loci with the use of genomewide-scan data on sib pairs. , 2000, American journal of human genetics.

[36]  D. Goldgar Multipoint analysis of human quantitative genetic variation. , 1990, American journal of human genetics.

[37]  S Purcell,et al.  Equivalence between Haseman-Elston and variance-components linkage analyses for sib pairs. , 2001, American journal of human genetics.

[38]  J. Wall,et al.  Haplotype blocks and linkage disequilibrium in the human genome , 2003, Nature Reviews Genetics.

[39]  F. Wright The phenotypic difference discards sib-pair QTL linkage information. , 1997, American journal of human genetics.

[40]  E. Wijsman,et al.  Linkage between quantitative trait and marker loci: Methods using all relative pairs , 1993, Genetic epidemiology.

[41]  P. Visscher,et al.  Power of regression and maximum likelihood methods to map QTL from sib‐pair and DZ twin data , 2001 .

[42]  Mapping quantitative traits with random and with ascertained sibships. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Doerge Multifactorial genetics: Mapping and analysis of quantitative trait loci in experimental populations , 2002, Nature Reviews Genetics.

[44]  E Drigalenko,et al.  How sib pairs reveal linkage. , 1998, American journal of human genetics.

[45]  R. Elston,et al.  Relatives of probands: models for preliminary genetic analysis , 1971, Annals of human genetics.

[46]  Lee-Jen Wei,et al.  A unified Haseman-Elston method for testing linkage with quantitative traits. , 2000, American journal of human genetics.

[47]  J. Huang,et al.  A score-statistic approach for the mapping of quantitative-trait loci with sibships of arbitrary size. , 2002, American journal of human genetics.

[48]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[49]  Eric S. Lander,et al.  Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms , 1988, Nature.

[50]  L. Abel,et al.  Maximum‐likelihood‐binomial method for genetic model‐free linkage analysis of quantitative traits in sibships , 1999, Genetic epidemiology.

[51]  L. Almasy,et al.  Bivariate quantitative trait linkage analysis: Pleiotropy versus co‐incident linkages , 1997, Genetic epidemiology.

[52]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[53]  S. Iturria,et al.  An empirical test of the significance of an observed quantitative trait locus effect that preserves additive genetic variation , 1999, Genetic epidemiology.

[54]  J. Szatkiewicz,et al.  Recent advances in human quantitative-trait-locus mapping: comparison of methods for discordant sibling pairs. , 2003, American journal of human genetics.

[55]  Soumitra Ghosh,et al.  Genetic analysis of autoimmune type 1 diabetes mellitus in mice , 1991, Nature.

[56]  Hui Shen,et al.  A genomewide linkage scan for quantitative-trait loci for obesity phenotypes. , 2002, American journal of human genetics.

[57]  E. Lander,et al.  Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Elston,et al.  Haseman and Elston revisited: The effects of ascertainment and residual familial correlations on power to detect linkage , 2000, Genetic epidemiology.

[59]  L Kruglyak,et al.  Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components. , 2000, American journal of human genetics.

[60]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Eric S. Lander,et al.  Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat , 1991, Cell.