A numerical comparative study of generalized Bernstein-Kantorovich operators

<p style='text-indent:20px;'>In this paper, a new generalization of the Bernstein-Kantorovich type operators involving multiple shape parameters is introduced. Certain Voronovskaja and Grüss-Voronovskaya type approximation results, statistical convergence and statistical rate of convergence of proposed operators are obtained by means of a regular summability matrix. Some illustrative graphics that demonstrate the convergence behavior, accuracy and consistency of the operators are given via Maple algorithms. The proposed operators are comprehensively compared with classical Bernstein, Bernstein-Kantorovich and other new modifications of Bernstein operators such as <inline-formula><tex-math id="M1">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein, <inline-formula><tex-math id="M2">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich, <inline-formula><tex-math id="M3">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Bernstein and <inline-formula><tex-math id="M4">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich operators.</p>

[1]  Hari M. Srivastava,et al.  Statistical weighted B-summability and its applications to approximation theorems , 2017, Appl. Math. Comput..

[2]  Gang Hu,et al.  Continuity conditions for Q-Bézier curves of degree n , 2017, Journal of inequalities and applications.

[3]  Özlem Ege Oruç,et al.  An alternative distribution function estimation method using rational Bernstein polynomials , 2019, J. Comput. Appl. Math..

[4]  Uğur Kadak,et al.  Extended Bernstein-Kantorovich-Stancu Operators with Multiple Parameters and Approximation Properties , 2021 .

[5]  S. A. Mohiuddine,et al.  Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter $${\varvec{\alpha }}$$ , 2020 .

[6]  Hamid Reza Tabrizidooz,et al.  Bernstein polynomial basis for numerical solution of boundary value problems , 2017, Numerical Algorithms.

[7]  S. A. Mohiuddine,et al.  Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function , 2021, Advances in Difference Equations.

[8]  Blending‐type approximation by Lupaş–Durrmeyer‐type operators involving Pólya distribution , 2021, Mathematical Methods in the Applied Sciences.

[9]  Hari M. Srivastava,et al.  Construction of Stancu-Type Bernstein Operators Based on Bézier Bases with Shape Parameter λ , 2019, Symmetry.

[11]  Expansion of moments of Bernstein polynomials , 2019, Journal of Mathematical Analysis and Applications.

[12]  Hüseyin Aktuğlu,et al.  Local approximation properties for certain King type operators , 2013 .

[13]  Faruk Özger On new Bézier bases with Schurer polynomials and corresponding results in approximation theory , 2019 .

[14]  Xiaocong Han,et al.  A novel generalization of Bézier curve and surface , 2008 .

[15]  H. Bohman,et al.  On approximation of continuous and of analytic functions , 1952 .

[16]  Yilmaz Simsek,et al.  Multidimensional Bernstein polynomials and Bezier curves: Analysis of machine learning algorithm for facial expression recognition based on curvature , 2019, Appl. Math. Comput..

[17]  Kamil Demirci,et al.  Korovkin type approximation theorems in B-statistical sense , 2009, Math. Comput. Model..

[18]  Kadir Kanat,et al.  Some approximation results for Stancu type Lupaş-Schurer operators based on (p, q)-integers , 2018, Appl. Math. Comput..

[19]  Uğur Kadak Generalized Weighted Invariant Mean Based on Fractional Difference Operator with Applications to Approximation Theorems for Functions of Two Variables , 2017 .

[20]  Approximation by the Parametric Generalization of Baskakov–Kantorovich Operators Linking with Stancu Operators , 2021 .

[21]  U. Kadak Generalized Statistical Convergence Based on Fractional Order Difference Operator and Its Applications to Approximation Theorems , 2019 .

[22]  Mehdi Dehghan,et al.  A new approach to improve the order of approximation of the Bernstein operators: theory and applications , 2017, Numerical Algorithms.

[23]  Oktay Duman,et al.  Statistical approximation by positive linear operators , 2004 .

[24]  Faruk Özger Applications of Generalized Weighted Statistical Convergence to Approximation Theorems for Functions of One and Two Variables , 2020 .

[25]  The Bézier variant of Kantorovich type λ-Bernstein operators , 2018, Journal of inequalities and applications.

[26]  Badriah A. S. Alamri,et al.  Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems , 2018, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[27]  Sofiya Ostrovska,et al.  Convergence of Generalized Bernstein Polynomials , 2002, J. Approx. Theory.

[28]  Approximation of functions by a new family of generalized Bernstein operators , 2017 .

[29]  S. Gal,et al.  Gr\"uss and Gr\"uss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables , 2014, 1401.6824.

[30]  A. D. Gadjiev,et al.  Some approximation theorems via statistical convergence , 2002 .

[31]  Construction of a new family of Bernstein‐Kantorovich operators , 2017 .

[32]  Sangkyun Lee,et al.  Structure Learning of Gaussian Markov Random Fields with False Discovery Rate Control , 2019, Symmetry.

[33]  Approximation of functions by a new class of generalized Bernstein–Schurer operators , 2020 .

[34]  V. Totik,et al.  Moduli of smoothness , 1987 .

[35]  Approximation properties of λ-Bernstein operators , 2018, Journal of inequalities and applications.

[36]  Hari M. Srivastava,et al.  A Link between Approximation Theory and Summability Methods via Four-Dimensional Infinite Matrices , 2021, Mathematics.

[37]  U. Kadak Modularly weighted four dimensional matrix summability with application to Korovkin type approximation theorem , 2018, Journal of Mathematical Analysis and Applications.

[38]  Vishnu Narayan Mishra,et al.  Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials , 2018 .

[39]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[40]  Gerhard Grüss,et al.  Über das Maximum des absoluten Betrages von $$\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)} g\left( x \right)dx - \frac{1}{{\left( {b - a} \right)^2 }}\int\limits_a^b {f\left( x \right)dx} \int\limits_a^b g \left( x \right)dx$$ , 1935 .

[41]  Uğur Kadak On relative weighted summability in modular function spaces and associated approximation theorems , 2017 .