Ion mobility spectrometry: Current status and application for chemical warfare agents detection

Abstract The important application of the ion mobility spectrometry (IMS) is the detection of very toxic compounds classified as chemical warfare agents (CWAs). IMS is the main technique applied in the instruments designed for on-site analysis of CWA. Different kinds of instruments based on IMS have been described analyzing their sensitivity and resolving power. Physical fundamentals of the operation principles as well as construction of detectors have been discussed. The article contains the review of the most important publications concerning the application of IMS in detection of CWAs including the new directions of development and future prospects. The data of the most classic CWAs containing values of reduced mobilities of ions generated from the molecules of these substances have also been presented.

[1]  C. L. Thomas,et al.  Characterisation of the phosgene response of a membrane inlet 63Ni ion mobility spectrometer. , 2002, The Analyst.

[2]  J. A. Stone,et al.  Chemical standards in ion mobility spectrometry , 2003 .

[3]  R. Zenobi,et al.  Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry. , 2015, Analytical chemistry.

[4]  Aviv Amirav,et al.  Fast GC‐PFPD system for field analysis of chemical warfare agents , 2000 .

[5]  M. Sillanpää,et al.  Quantitative response of IMS detector for mixtures containing two active components. , 2012, Analytical chemistry.

[6]  Y. Seto,et al.  Evaluation of Detection Performance of Portable Aspiration-Type Ion Mobility Spectrometer with Seven Detection Cells for Chemical Warfare Agents , 2010 .

[7]  J. A. Stone,et al.  A determination of the effective temperatures for the dissociation of the proton bound dimer of dimethyl methylphosphonate in a planar differential mobility spectrometer , 2010 .

[8]  Mika Sillanpää,et al.  Sample-extraction methods for ion-mobility spectrometry in water analysis , 2012 .

[9]  Erkinjon G. Nazarov,et al.  Differential mobility spectrometer: Model of operation , 2007 .

[10]  Richard D. Smith,et al.  Ultrahigh-resolution differential ion mobility spectrometry using extended separation times. , 2011, Analytical chemistry.

[11]  Kibong Kim,et al.  Destruction and detection of chemical warfare agents. , 2011, Chemical reviews.

[12]  M. Sillanpää,et al.  The effect of humidity on sensitivity of amine detection in ion mobility spectrometry. , 2011, Talanta.

[13]  A. Zalewska,et al.  Identification of organophosphate nerve agents by the DMS detector , 2015 .

[14]  E. Krylov Differential mobility spectrometer: optimization of the analytical characteristics , 2012, International Journal for Ion Mobility Spectrometry.

[15]  S. Zimmermann,et al.  A compact high resolution ion mobility spectrometer for fast trace gas analysis. , 2013, The Analyst.

[16]  S. Ng,et al.  Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin , 2014, Biomedical microdevices.

[17]  C A Hill,et al.  A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer. , 2003, The Analyst.

[18]  L. Repetto,et al.  Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes , 2015 .

[19]  I. Gràcia,et al.  Review on ion mobility spectrometry. Part 1: current instrumentation. , 2015, The Analyst.

[20]  M. Sillanpää,et al.  Ion mobility spectrometry and its applications in detection of chemical warfare agents. , 2010, Analytical chemistry.

[21]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[22]  W. L. Robb,et al.  THIN SILICONE MEMBRANES‐THEIR PERMEATION PROPERTIES AND SOME APPLICATIONS , 1968, Annals of the New York Academy of Sciences.

[23]  P. D'agostino,et al.  Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. , 2010, Rapid communications in mass spectrometry : RCM.

[24]  G. Eiceman,et al.  Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. , 2003, The journal of physical chemistry. A.

[25]  Osmo Hänninen,et al.  Determination of soman and VX degradation products by an aspiration ion mobility spectrometry , 2001 .

[26]  S. Milinkovic APPLICATION OF AN IONIZATION CHAMBER AS A GAS SENSOR , 1998 .

[27]  M. Bowers Ion mobility spectrometry: A personal view of its development at UCSB. , 2014, International journal of mass spectrometry.

[28]  M. Tabrizchi,et al.  Effect of hydration on the kinetics of proton-bound dimer formation: experimental and theoretical study. , 2014, The journal of physical chemistry. A.

[29]  M. Azimi,et al.  Thermal Solid Sample Introduction-Fast Gas Chromatography-Low Flow Ion Mobility Spectrometry as a field screening detection system. , 2012, Journal of chromatography. A.

[30]  A. Snyder,et al.  Closed tube sample introduction for gas chromatography–ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound , 2006 .

[31]  Takao Nakagawa,et al.  Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. , 2015, Analytica chimica acta.

[32]  H. Hill,et al.  Ion mobility spectrometry detection for gas chromatography. , 2008, Journal of chromatography. A.

[33]  Richard D. Smith,et al.  Modeling the resolution and sensitivity of FAIMS analyses , 2004, Journal of the American Society for Mass Spectrometry.

[34]  Jörg Ingo Baumbach,et al.  Detection of the gasoline components methyl tert-butyl ether, benzene, toluene, and m-xylene using ion mobility spectrometers with a radioactive and UV ionization source. , 2003, Analytical chemistry.

[35]  S. Coy,et al.  Temperature effects in differential mobility spectrometry , 2009 .

[36]  M. Tabrizchi,et al.  The effect of ion molecule reactions on peaks in ion mobility spectrometry , 2008 .

[37]  D. Clemmer,et al.  High-resolution ion cyclotron mobility spectrometry. , 2009, Analytical chemistry.

[38]  K. Morokuma,et al.  Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection. , 2010, Analytical chemistry.

[39]  J. A. Stone,et al.  Peer Reviewed: Ion Mobility Spectrometers in National Defense , 2004 .

[40]  M. Saraji,et al.  Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. , 2014, Analytica chimica acta.

[41]  Quan Shi,et al.  DMS-IMS2, GC-DMS, DMS-MS: DMS hybrid devices combining orthogonal principles of separation for challenging applications , 2008, SPIE Defense + Commercial Sensing.

[42]  Richard D. Smith,et al.  Fundamentals of traveling wave ion mobility spectrometry. , 2008, Analytical chemistry.

[43]  Haiyang Li,et al.  Time-resolved dynamic dilution introduction for ion mobility spectrometry and its application in end-tidal propofol monitoring , 2015, Journal of breath research.

[44]  S. H. Kim,et al.  Plasma chromatography of phosphorus esters , 1977 .

[45]  John A. McLean,et al.  Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation , 2014, Analytical chemistry.

[46]  Y. Seto,et al.  Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents , 2010, Forensic Toxicology.

[47]  E. G. Nazarov,et al.  A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field , 1993 .

[48]  Zheng Ouyang,et al.  Design and characterization of a multisource hand-held tandem mass spectrometer. , 2008, Analytical chemistry.

[49]  E. Nazarov,et al.  Electric field dependence of the ion mobility , 2009 .

[50]  Z. Mester,et al.  Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. , 2007, Analytical chemistry.

[51]  Helko Borsdorf,et al.  Recent Developments in Ion Mobility Spectrometry , 2011 .

[52]  S. J. Ambrose,et al.  Using Gas Modifiers to Significantly Improve Sensitivity and Selectivity in a Cylindrical FAIMS Device , 2014, Journal of The American Society for Mass Spectrometry.

[53]  H. Borsdorf,et al.  Response of halogenated compounds in ion mobility spectrometry depending on their structural features. , 2011, Talanta.

[54]  Janusz Pawliszyn,et al.  A new thermal desorption solid-phase microextraction system for hand-held ion mobility spectrometry , 2006 .

[55]  T. Covey,et al.  Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers , 2012, International Journal for Ion Mobility Spectrometry.

[56]  T. Merkel,et al.  Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) , 2000 .

[57]  G. Eiceman,et al.  Tandem differential mobility spectrometry with ion dissociation in air at ambient pressure and temperature. , 2015, The Analyst.

[58]  R. B. Turner,et al.  Hand-held ion mobility spectrometers , 1994 .

[59]  H. Hill,et al.  Separation and identification of some chemical warfare degradation products using electrospray high resolution ion mobility spectrometry with mass selected detection , 2000 .

[60]  Jie Yang,et al.  Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples , 2014, Sensors.

[61]  Sergio Armenta,et al.  A review of recent, unconventional applications of ion mobility spectrometry (IMS). , 2011, Analytica chimica acta.

[62]  H. Hill,et al.  Chemical standards in ion mobility spectrometry. , 2010, The Analyst.

[63]  M. Sillanpää,et al.  Ion mobility spectrometers with doped gases. , 2008, Talanta.

[64]  Zheng Ouyang,et al.  Miniature mass spectrometers. , 2009, Annual review of analytical chemistry.

[65]  M Valcárcel,et al.  Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. , 2008, Journal of chromatography. A.

[66]  M. Maziejuk,et al.  Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents. , 2015, Talanta.

[67]  T. Miller,et al.  Kinetics of ion-molecule reactions with 2-chloroethyl ethyl sulfide at 298 K: a search for CIMS schemes for mustard gas. , 2008, The journal of physical chemistry. A.

[68]  Yasuo Seto,et al.  Chapter 60 – On-Site Detection of Chemical Warfare Agents , 2015 .

[69]  C. L. Thomas,et al.  The response of a membrane inlet ion mobility spectrometer to chlorine and the effect of water contamination of the drying media on ion mobility spectrometric responses to chlorine , 2001 .

[70]  Rodi Sferopoulos,et al.  A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf Items , 2009 .

[71]  T. Mauriala,et al.  Characterization of a high resolution drift tube ion mobility spectrometer with a multi-ion source platform , 2010 .

[72]  Mikko Utriainen,et al.  Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors , 2003 .

[73]  J. A. Stone,et al.  Dissociation of proton bound ketone dimers in asymmetric electric fields with differential mobility spectrometry and in uniform electric fields with linear ion mobility spectrometry. , 2013, The journal of physical chemistry. A.

[74]  D. Hank Ellison,et al.  Handbook of chemical and biological warfare agents , 1999 .

[75]  Perdita Barran,et al.  Ion Mobility Mass Spectrometry. , 2015, The Analyst.

[76]  Alexander A. Aksenov,et al.  Chemical standards for ion mobility spectrometry: a review , 2009 .

[77]  J. Puton,et al.  Modelling of penetration of ions through a shutter grid in ion mobility spectrometers , 2008 .

[78]  H. Borsdorf,et al.  The effect of humidity on gas sensing with ion mobility spectrometry , 2015 .

[79]  J. Pawliszyn,et al.  The coupling of solid-phase microextraction/surface enhanced laser desorption/ionization to ion mobility spectrometry for drug analysis. , 2007, Analytica chimica acta.

[80]  Peter de B. Harrington,et al.  Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS) , 2005 .

[81]  S. Barth,et al.  Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. , 2008, Analytical chemistry.

[82]  G. Vidal-de-Miguel,et al.  Transversal Modulation Ion Mobility Spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. , 2012, Analytical chemistry.

[83]  R Graham Cooks,et al.  Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. , 2011, Rapid communications in mass spectrometry : RCM.

[84]  D. N. Kramer,et al.  Colorimetric Determination of Acetylcholinesterase Activity , 1958 .

[85]  F. Karasek,et al.  Plasma Chromatography™—A New Dimension for Gas Chromatography and Mass Spectrometry , 1970 .

[86]  H. Hill,et al.  Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof)MS) , 2005 .

[87]  H. Hill,et al.  Surface detection of chemical warfare agent simulants and degradation products , 2005 .

[88]  S. Zimmermann,et al.  A compact high resolution electrospray ionization ion mobility spectrometer. , 2016, Talanta.

[89]  Jiaqiang Xu,et al.  Advances in the chemical sensors for the detection of DMMP — A simulant for nerve agent sarin , 2010 .

[90]  J I Baumbach,et al.  Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. , 2015, The Analyst.

[91]  T. Miller,et al.  Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX. , 2009, The journal of physical chemistry. A.

[92]  E. Krylov Comparison of the planar and coaxial field asymmetrical waveform ion mobility spectrometer (FAIMS) , 2003 .

[93]  Z. Karpas,et al.  Ion mobility spectrometry , 1993, Breathborne Biomarkers and the Human Volatilome.

[94]  H. Hill,et al.  AMMONIA AS A MODIFIER IN ION MOBILITY SPECTROMETRY: EFFECTS ON ION MOBILITIES AND POTENTIAL AS A SEPARATION TOOL , 2014 .

[95]  T. Covey,et al.  Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. , 2016, Mass spectrometry reviews.

[96]  B. Ayhan,et al.  Chemical Agent Detection Using GC-IMS: A Comparative Study , 2010, IEEE Sensors Journal.