Global dynamics of two coupled parametrically excited van der Pol oscillators

[1]  K. Asmis,et al.  Combination and Internal Resonance in a Nonlinear Two-Degrees-of-Freedom System , 1972 .

[2]  Vimal Singh,et al.  Perturbation methods , 1991 .

[3]  A. Nayfeh,et al.  Nonlinear Analysis of the Lateral Response of Columns to Periodic Loads , 1978 .

[4]  P. Holmes,et al.  Bifurcation of periodic motions in two weakly coupled van der Pol oscillators , 1980 .

[5]  R. Rand,et al.  Dynamics of two strongly coupled van der pol oscillators , 1982 .

[6]  R. Rand,et al.  The transition from phase locking to drift in a system of two weakly coupled van der pol oscillators , 1988 .

[7]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[8]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[9]  A. Nayfeh,et al.  Prediction of bifurcations in a parametrically excited duffing oscillator , 1990 .

[10]  G. Kovačič,et al.  Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation , 1992 .

[11]  Z. C. Feng,et al.  Global bifurcations in the motion of parametrically excited thin plates , 1993 .

[12]  S. Wiggins,et al.  Orbits homoclinic to resonances: the Hamiltonian case , 1993 .

[13]  Jean Della Dora,et al.  An Algorithm for Computing a New Normal Form for Dynamical Systems , 2000, J. Symb. Comput..

[14]  Z. C. Feng,et al.  Global Bifurcations in Parametrically Excited Systems with Zero-to-One Internal Resonance , 2000 .

[15]  A. Maccari Modulated motion and infinite-period bifurcation for two non-linearly coupled and parametrically excited van der Pol oscillators , 2001 .

[16]  Wei Zhang Global and chaotic dynamics for a parametrically excited thin plate , 2001 .

[17]  Wei Zhang,et al.  Global dynamics of the cable under combined parametrical and external excitations , 2002 .

[18]  J. Zu,et al.  Computation of Normal Forms for High Dimensional Nonlinear Systems and Application to Nonplanar Motions of a Cantilever Beam , 2003 .

[19]  J. Zu,et al.  Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam , 2004 .

[20]  Qinsheng Bi Dynamical analysis of two coupled parametrically excited van der Pol oscillators , 2004 .

[21]  M. Yao,et al.  Global Bifurcations and Chaotic Dynamics in Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam , 2005 .

[22]  K. Rompala Modeling the Avian Circadian System with Coupled Nonlinear Oscillators , 2008 .

[23]  J. Zu,et al.  Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness , 2008 .

[24]  Wei Zhang,et al.  Global bifurcations and chaotic dynamics for a string-beam coupled system , 2008 .