Temporal self‐similarity created by spatial individual‐based population dynamics

We report an individual-based single-species model producing temporal scale-free, self-similar dynamics in time. Individuals in the population renew in an explicit space with a large number of loci. We show that reproduction, subsequent dispersal of the offspring, and mortality will organise population fluctuations such that the emerging dynamics represent power law and scale-free structures. Further, we show that spatially structured population dynamics may show red frequency spectra, a property that the simple nonlinear population models are generally lacking.

[1]  James D. Hamilton Time Series Analysis , 1994 .

[2]  E. Ranta,et al.  Red/blue chaotic power spectra , 1996, Nature.

[3]  C. Elton,et al.  The Ten-Year Cycle in Numbers of the Lynx in Canada , 1942 .

[4]  H. Joel Jeffrey,et al.  Chaos game visualization of sequences , 1992, Comput. Graph..

[5]  Maarten C. Boerlijst,et al.  Evolutionary consequences of spiral waves in a host—parasitoid system , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Ilkka Hanski,et al.  Specialist predators, generalist predators, and the microtine rodent cycle. , 1991 .

[7]  Richard V. Solé,et al.  Order and chaos in a 2D Lotka-Volterra coupled map lattice , 1991 .

[8]  G. Sugihara From out of the blue , 1995, Nature.

[9]  Veijo Kaitala,et al.  Travelling waves in vole population dynamics , 1997, Nature.

[10]  Robert M. May,et al.  Species coexistence and self-organizing spatial dynamics , 1994, Nature.

[11]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[12]  Stuart L. Pimm,et al.  The variability of population densities , 1988, Nature.

[13]  J. Bascompte,et al.  Rethinking complexity: modelling spatiotemporal dynamics in ecology. , 1995, Trends in ecology & evolution.

[14]  Ricard V. Solé,et al.  Spiral waves, chaos and multiple attractors in lattice models of interacting populations , 1992 .

[15]  Erkki Korpimäki,et al.  Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos , 1993, Nature.

[16]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Joel E. Cohen,et al.  Unexpected dominance of high frequencies in chaotic nonlinear population models , 1995, Nature.

[18]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[19]  L. Keith,et al.  Wildlife's ten-year cycle , 1963 .

[20]  John H. Lawton,et al.  More time means more variation , 1988, Nature.

[21]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[22]  T. Royama,et al.  Analytical Population Dynamics , 1994, Population and Community Biology Series.

[23]  Robert M. May,et al.  The spatial dynamics of host-parasitoid systems , 1992 .

[24]  Anne Lohrli Chapman and Hall , 1985 .

[25]  E. Ranta,et al.  The spatial dimension in population fluctuations , 1997, Science.

[26]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[27]  John M. Fryxell,et al.  Individual Behavior and Community Dynamics , 1997, Population and Community Biology Series.

[28]  J. Halley Ecology, evolution and 1 f -noise. , 1996, Trends in ecology & evolution.

[29]  D. A. Perry,et al.  Self-organizing systems across scales. , 1995, Trends in ecology & evolution.

[30]  Paul H. Harvey,et al.  The Analysis of Biological Populations , 1972 .