Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics

Computer vision systems have demonstrated considerable improvement in recognizing and verifying faces in digital images. Still, recognizing faces appearing in unconstrained, natural conditions remains a challenging task. In this paper, we present a face-image, pair-matching approach primarily developed and tested on the “Labeled Faces in the Wild” (LFW) benchmark that reflects the challenges of face recognition from unconstrained images. The approach we propose makes the following contributions. 1) We present a family of novel face-image descriptors designed to capture statistics of local patch similarities. 2) We demonstrate how unlabeled background samples may be used to better evaluate image similarities. To this end, we describe a number of novel, effective similarity measures. 3) We show how labeled background samples, when available, may further improve classification performance, by employing a unique pair-matching pipeline. We present state-of-the-art results on the LFW pair-matching benchmarks. In addition, we show our system to be well suited for multilabel face classification (recognition) problem, on both the LFW images and on images from the laboratory controlled multi-PIE database.

[1]  Wei Liu,et al.  Output Regularized Metric Learning with Side Information , 2008, ECCV.

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  Trevor Darrell,et al.  Transfer learning for image classification with sparse prototype representations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Prateek Jain,et al.  Fast Similarity Search for Learned Metrics , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Bernt Schiele,et al.  Extracting Structures in Image Collections for Object Recognition , 2010, ECCV.

[7]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[9]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[10]  Erik G. Learned-Miller,et al.  Unsupervised Joint Alignment of Complex Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Xiaoyang Tan,et al.  Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition , 2007, AMFG.

[12]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[14]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[15]  Shimon Ullman,et al.  Single-example Learning of Novel Classes using Representation by Similarity , 2005, BMVC.

[16]  Patrick J. Flynn,et al.  Preliminary Face Recognition Grand Challenge Results | NIST , 2006 .

[17]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[18]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[19]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[22]  R. Stiefelhagen,et al.  Evaluation of Local Descriptors on the Labeled Faces in the Wild Dataset , 2009 .

[23]  Antoine Bordes,et al.  The Huller: A Simple and Efficient Online SVM , 2005, ECML.

[24]  Tal Hassner,et al.  Similarity Scores Based on Background Samples , 2009, ACCV.

[25]  Michael Fink Object Classication from a Single Example Utilizing Class Relevance Pseudo-Metrics , 2004, NIPS 2004.

[26]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[27]  Michael Fink,et al.  Object Classification from a Single Example Utilizing Class Relevance Metrics , 2004, NIPS.

[28]  Shree K. Nayar,et al.  Attribute and simile classifiers for face verification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[30]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[31]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[32]  Lior Wolf,et al.  Patch-Based Texture Edges and Segmentation , 2006, ECCV.

[33]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[34]  Prateek Jain,et al.  Fast image search for learned metrics , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Thorsten Joachims,et al.  Transductive Learning via Spectral Graph Partitioning , 2003, ICML.

[36]  Matti Pietikäinen,et al.  A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification , 2001, ICAPR.

[37]  C. Schmid,et al.  Description of Interest Regions with Center-Symmetric Local Binary Patterns , 2006, ICVGIP.

[38]  Nicolas Pinto,et al.  How far can you get with a modern face recognition test set using only simple features? , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Patrick J. Flynn,et al.  Preliminary Face Recognition Grand Challenge Results , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[40]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[41]  Shengcai Liao,et al.  Face Detection Based on Multi-Block LBP Representation , 2007, ICB.

[42]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Tal Hassner,et al.  The One-Shot similarity kernel , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[45]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Frédéric Jurie,et al.  Learning Visual Similarity Measures for Comparing Never Seen Objects , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Cordelia Schmid,et al.  Is that you? Metric learning approaches for face identification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[49]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[50]  Brian C. Lovell,et al.  Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference , 2009, ICB.

[51]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[52]  Tomer Hertz,et al.  Learning Distance Functions using Equivalence Relations , 2003, ICML.

[53]  Shimon Ullman,et al.  Object Classification Using a Fragment-Based Representation , 2000, Biologically Motivated Computer Vision.

[54]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[55]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[56]  N. Cristianini,et al.  On Kernel-Target Alignment , 2001, NIPS.

[57]  Jitendra Malik,et al.  Shape Context: A New Descriptor for Shape Matching and Object Recognition , 2000, NIPS.

[58]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[59]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[60]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[61]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 large-scale results , 2007 .

[62]  Tal Hassner,et al.  Multiple One-Shots for Utilizing Class Label Information , 2009, BMVC.

[63]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Gal Chechik,et al.  Extracting Relevant Structures with Side Information , 2002, NIPS.

[65]  Lior Wolf,et al.  Using Biologically Inspired Features for Face Processing , 2007, International Journal of Computer Vision.

[66]  Misha Pavel,et al.  Adjustment Learning and Relevant Component Analysis , 2002, ECCV.

[67]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.