Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions

[1]  G. P. Srivastava,et al.  The Physics of Phonons , 2019 .

[2]  Youping Chen,et al.  Effects of phonons on mobility of dislocations and dislocation arrays , 2017 .

[3]  E. Oren,et al.  Dislocation kinematics: a molecular dynamics study in Cu , 2017 .

[4]  Y. Mishin,et al.  Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study , 2017 .

[5]  M. Tschopp,et al.  The role of Ta on twinnability in nanocrystalline Cu–Ta alloys , 2017 .

[6]  R. Mishra,et al.  Extreme creep resistance in a microstructurally stable nanocrystalline alloy , 2016, Nature.

[7]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[8]  C. Elsässer,et al.  Influence of point defects on the phonon thermal conductivity and phonon density of states of Bi2Te3 , 2016 .

[9]  G. P. P. Pun,et al.  Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys , 2015 .

[10]  R. Banerjee,et al.  Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloys , 2015 .

[11]  R. Banerjee,et al.  Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu–Ta solid solution , 2015 .

[12]  A. Nikroo,et al.  Grain-size-independent plastic flow at ultrahigh pressures and strain rates. , 2015, Physical review letters.

[13]  M. Tschopp,et al.  Microstructure and Mechanical Properties of Bulk Nanostructured Cu-Ta Alloys Consolidated by Equal Channel Angular Extrusion , 2014 .

[14]  S. Groh,et al.  Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron , 2014 .

[15]  C. Siviour,et al.  Strain rate-dependant mechanical properties of OFHC copper , 2013, Journal of Materials Science.

[16]  A. Kuksin,et al.  Atomistic simulation of the motion of dislocations in metals under phonon drag conditions , 2013 .

[17]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[18]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[19]  K. Albe,et al.  Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases , 2011 .

[20]  W. Blum,et al.  A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity , 2009 .

[21]  Q. Wei,et al.  Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures , 2008 .

[22]  G. Ravichandran,et al.  Thermomechanical characterization of pure polycrystalline tantalum , 2007 .

[23]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[24]  S. G. Srinivasan,et al.  Deformation twinning in nanocrystalline copper at room temperature and low strain rate , 2004 .

[25]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[26]  K. T. Ramesh,et al.  Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates , 2001 .

[27]  K. T. Ramesh,et al.  Deformation behavior and plastic instabilities of ultrafine-grained titanium , 2001 .

[28]  Peter P. Gillis,et al.  Estimation of flow stress under high rate plastic deformation , 1995 .

[29]  M. Meyers Dynamic Behavior of Materials , 1994 .

[30]  Manninen,et al.  Edge dislocations in fcc metals: Microscopic calculations of core structure and positron states in Al and Cu. , 1990, Physical review. B, Condensed matter.

[31]  R. Kumble,et al.  Viscous Drag on Dislocations at High Strain Rates in Copper , 1969 .

[32]  D. S. Wood,et al.  Dislocation Mobility in Copper , 1967 .

[33]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  W. E. Carrington,et al.  The use of flat-ended projectiles for determining dynamic yield stress III. Changes in microstructure caused by deformation under impact at high-striking velocities , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  E. Orowan Zur Kristallplastizität. I , 1934 .

[36]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[37]  S. Chandra,et al.  Multiscale modeling of plasticity in a copper single crystal deformed at high strain rates , 2015 .

[38]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[39]  Sia Nemat-Nasser,et al.  Determination of temperature rise during high strain rate deformation , 1998 .

[40]  R. Peierls The size of a dislocation , 1940 .