Uniform semiclassical IVR treatment of the S-matrix

A new, uniform, semiclassical, initial value representation expression is obtained for the S-matrix in the case of collinear collisions. The derivation is based on an asymptotic analysis (for large inter-fragment distances) of a uniform semiclassical integral expression for the time independent scattering wave function. Although this derivation specifically treats the case of the collision of an atom with a harmonic diatom, the final expression is generalized to arbitrary collinear collisions. The various properties of the expression and its relation to existing semiclassical methods are discussed. Numerical tests are performed for the well-known Secrest–Johnson system. Among other important advantages, the present treatment is a well-defined, uniform, semiclassical approximation that is capable of good accuracy and high computational efficiency, requiring a relatively small number of classical trajectories to obtain converged S-matrix elements for a given energy and initial state.

[1]  J. Connor,et al.  Application of a non-integer Bessel uniform approximation to inelastic molecular collisions , 1979 .

[2]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions. III. Uniformization Using Exact Trajectories , 1972 .

[3]  William H. Miller,et al.  Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation , 1998 .

[4]  K. Kay,et al.  Time-integrated form of the semiclassical initial value method , 1999 .

[5]  S. Garashchuk,et al.  Wave packet correlation function approach to H2(ν)+H→H+H2(ν′): semiclassical implementation , 1996 .

[6]  W. Miller,et al.  Erratum: ``Forward-backward initial value representation for semiclassical time correlation functions'' [J. Chem. Phys. 110, 6635 (1999)] , 1999 .

[7]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions. Uniformization with Elastic Collision Trajectories , 1972 .

[8]  William H. Miller,et al.  Mixed semiclassical-classical approaches to the dynamics of complex molecular systems , 1997 .

[9]  P. Brumer,et al.  Semiclassical initial value approach for chaotic long-lived dynamics , 1998 .

[10]  J. Connor Catastrophes and molecular collisions , 1976 .

[11]  R. Marcus,et al.  Semiclassical transition probabilities by an asymptotic evaluation of the S matrix for elastic and inelastic collisions. Bessel uniform approximation , 1973 .

[12]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[13]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[14]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[15]  Eric J. Heller,et al.  Semiclassical calculation and analysis of dynamical systems with mixed phase space , 1994 .

[16]  Michael F. Herman IMPROVING THE ACCURACY OF SEMICLASSICAL WAVEPACKET PROPAGATION USING INTEGRAL CONDITIONING TECHNIQUES , 1997 .

[17]  P. Brumer,et al.  Semiclassical collision theory in the initial value representation: Efficient numerics and reactive formalism , 1992 .

[18]  D. Truhlar,et al.  Classical S matrix: numerical applications to classically allowed chemical reactions , 1974 .

[19]  D. W. Noid,et al.  A uniform classical S matrix theory for bound-bound Franck-Condon factors , 1985 .

[20]  Robbins,et al.  New way to compute Maslov indices. , 1987, Physical review. A, General physics.

[21]  M. Brewer ON THE SCALING OF SEMICLASSICAL INITIAL VALUE METHODS , 1999 .

[22]  D. Manolopoulos,et al.  APPLICATION OF THE FROZEN GAUSSIAN APPROXIMATION TO THE PHOTODISSOCIATION OF CO2 , 1995 .

[23]  R. Marcus,et al.  Theory of Semiclassical Transition Probabilities for Inelastic and Reactive Collisions. II Asymptotic Evaluation of the S Matrix , 1971 .

[24]  Brumer,et al.  Generalized semiclassical-phase-index formulas via sequential stationary phase. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  William H. Miller,et al.  ANALYTIC CONTINUATION OF CLASSICAL MECHANICS FOR CLASSICALLY FORBIDDEN COLLISION PROCESSES. , 1972 .

[26]  K. Kay SEMICLASSICAL TUNNELING IN THE INITIAL VALUE REPRESENTATION , 1997 .

[27]  W. Miller Classical S Matrix for Rotational Excitation; Quenching of Quantum Effects in Molecular Collisions , 1971 .

[28]  D. Secrest,et al.  Exact Quantum‐Mechanical Calculation of a Collinear Collision of a Particle with a Harmonic Oscillator , 1966 .

[29]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[30]  D. Truhlar,et al.  Tests of semiclassical treatments of vibrational-translational energy transfer collinear collisions of helium with hydrogen molecules , 1975 .

[31]  William H. Miller,et al.  Application of the forward-backward initial value representation to molecular energy transfer , 1999 .

[32]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[33]  F. Grossmann TIME-DEPENDENT SEMICLASSICAL CALCULATION OF RESONANCE LIFETIMES , 1996 .

[34]  S. Gray,et al.  Photodissociation within classical S matrix theory , 1984 .

[35]  E. Coronado,et al.  Nonadiabatic photodissociation dynamics of ICN in the à continuum: A semiclassical initial value representation study , 2000 .

[36]  W. Miller,et al.  Semiclassical calculation of cumulative reaction probabilities , 1996 .

[37]  W. Miller,et al.  Semiclassical calculation of Franck-Condon intensities for reactive systems , 1996 .

[38]  C. Rankin,et al.  The Classical S-Matrix: Linear Reactive Collisions of H + Cl2 , 1971 .

[39]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[40]  W. Miller,et al.  Semi-classical correction for quantum-mechanical scattering , 1994 .

[41]  K. Kay Semiclassical propagation for multidimensional systems by an initial value method , 1994 .

[42]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[43]  R. Marcus,et al.  SEMICLASSICAL TRANSITION PROBABILITIES (S MATRIX) OF VIBRATIONAL-- TRANSLATIONAL ENERGY TRANSFER. , 1971 .

[44]  Michael F. Herman,et al.  A numerical test of different integral conditioning approximations for a semiclassical initial value representation for wavepacket propagation , 1998 .

[45]  R. Marcus Extension of the WKB method to wave functions and transition probability amplitudès (S-matrix) for inelastic or reactive collisions , 1970 .

[46]  Kay,et al.  Globally uniform semiclassical expressions for time-independent wave functions. , 1996, Physical review letters.

[47]  R. Marcus Theory of Semiclassical Transition Probabilities (S Matrix) for Inelastic and Reactive Collisions , 1971 .

[48]  R. Marcus,et al.  Theory of semiclassical transition probabilities for inelastic and reactive collisions. IV. Classically-inaccessible transitions calculated by integration along complex-valued trajectories , 1972 .

[49]  R. Marcus,et al.  Semiclassical S matrix theory for a compound state resonance in the reactive collinear H + H2 collision , 1974 .

[50]  E. Heller,et al.  Generalized Gaussian wave packet dynamics, Schrödinger equation, and stationary phase approximation , 1988 .

[51]  D. Farrelly,et al.  A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives , 1983 .

[52]  Uniform semiclassical wave-packet propagation and eigenstate extraction in a smooth chaotic system. , 1994, Physical review letters.

[53]  Brumer,et al.  Semiclassical propagation: Phase indices and the initial-value formalism. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[54]  W. Miller,et al.  Semiclassical molecular dynamics simulations of ultrafast photodissociation dynamics associated with the Chappuis band of ozone , 1998 .

[55]  R. T. Skodje,et al.  Physical origin of oscillations in the three‐dimensional collision amplitudes of heavy–light–heavy systems. Semiclassical quantization of chaotic scattering , 1993 .

[56]  F. Grossmann,et al.  Semiclassical Approach to the Hydrogen-exchange Reaction- Reactive and Transition-state Dynamics , 1997 .

[57]  P. Brumer,et al.  SEMICLASSICAL INITIAL VALUE THEORY FOR DISSOCIATION DYNAMICS , 1997 .

[58]  William H. Miller,et al.  Application of the semiclassical initial value representation and its linearized approximation to inelastic scattering , 1999 .

[59]  R. Marcus Semiclassical S‐matrix theory. VI. Integral expression and transformation of conventional coordinates , 1973 .

[60]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[61]  K. Kay,et al.  Improving the efficiency of the Herman–Kluk propagator by time integration , 1999 .

[62]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[63]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[64]  W. Miller,et al.  Semiclassical initial value representation for rotational degrees of freedom: The tunneling dynamics of HCl dimer , 1998 .

[65]  R. Marcus,et al.  Semiclassical collision theory. Multidimensional integral method , 1974 .

[66]  W. Miller,et al.  Classical S‐Matrix Theory of Reactive Tunneling: Linear H+H2 Collisions , 1972 .

[67]  K. Kay,et al.  Globally uniform semiclassical wave functions for multidimensional systems , 1998 .

[68]  B. Jackson,et al.  Initial value representation for the classical propagator and S-matrix with the help of coherent states , 1998 .