Energy gap tuning in graphene on hexagonal boron nitride bilayer system

We use a tight-binding approach and density functional theory calculations to study the band structure of graphene/hexagonal boron nitride bilayer system in the most stable configuration. We show that an electric field applied in the direction perpendicular to the layers significantly modifies the electronic structure of the whole system, including shifts, anticrossing and other deformations of bands, which can allow to control a value of the energy gap. It is shown that band structure of biased system may be tailored for specific requirements of nanoelectronics applications. The carriers' mobilities are expected to be higher than in the bilayer graphene devices.