Morphology of neurons in the white matter of the adult human neocortex

SummaryNeurons in the human cerebral cortical white matter below motor, visual, auditory and prefrontal orbital areas have been studied with the Golgi method, immunohistochemistry and diaphorase histochemistry. The majority of white matter neurons are pyramidal cells displaying the typical polarized, spiny dendritic system. The morphological variety includes stellate forms as well as bipolar pyramidal cells, and the expression of a certain morphological phenotype seems to depend on the position of the neuron. Spineless nonpyramidal neurons with multipolar to bitufted dendritic fields constitute less than 10% of the nuerons stained for microtubule associated protein (MAP-2). Only 3% of the MAP-2 immunoreactive neurons display nicotine adenine dinucleotide-diaphorase activity. The white matter pyramidal neurons are arranged in radial rows continuous with the columns of layer VI neurons. Neuron density is highest below layer VI, and decreases with increasing distance from the gray matter. White matter neurons are especially abundant below the primary motor cortex, and are least frequent below the visual cortex area 17. In contrast to other mammalian species, the white matter neurons in man are not only present during development, but persist throughout life.

[1]  K. Albus,et al.  Morphology and axon terminal pattern of glutamate decarboxylase-immunoreactive cell types in the white matter of the cat occipital cortex during early postnatal development. , 1987, Brain research.

[2]  C. Shatz,et al.  The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Pasko Rakic,et al.  Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon , 1980, Journal of neurocytology.

[4]  C. Barnstable,et al.  Expression of a unique 56-kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  V. Braitenberg,et al.  Correlation of crystal growth with the staining of axons by the Golgi procedure. , 1967, Stain technology.

[6]  V. Chan‐Palay,et al.  I. Cytology and distribution in normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y , 1985 .

[7]  M. Jacobson,et al.  Embryonic vertebrate central nervous system: Revised terminology , 1970 .

[8]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  F. Valverde,et al.  Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study , 1988, The Journal of comparative neurology.

[10]  J. Parnavelas,et al.  Development of vasoactive‐intestinal‐polypeptide‐immunoreactive neurons in the rat occipital cortex: A combined immunohistochemical‐autoradiographic study , 1989, The Journal of comparative neurology.

[11]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[12]  J D Peduzzi,et al.  Genesis of GABA-immunoreactive neurons in the ferret visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. Parnavelas,et al.  Development of neuropeptide Y (NPY) immunoreactive neurons in the rat occipital cortex: A combined immunohistochemical‐autoradiographic study , 1990, The Journal of comparative neurology.

[14]  G. Meyer,et al.  Morphology and quantitative changes of transient NPY‐ir neuronal populations during early postnatal development of the cat visual cortex , 1987, The Journal of comparative neurology.

[15]  T. L. Hickey,et al.  Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  G. Banker,et al.  The establishment of polarity by hippocampal neurons in culture , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[18]  A. Antonini,et al.  Relation Between Putative Transmitter Phenotypes and Connectivity of Subplate Neurons During Cerebral Cortical Development , 1990, The European journal of neuroscience.

[19]  J. Sandell,et al.  NADPH diaphorase histochemistry in the macaque striate cortex , 1986, The Journal of comparative neurology.

[20]  C. Shatz,et al.  The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. Altman,et al.  Development of layer I and the subplate in the rat neocortex , 1990, Experimental Neurology.

[22]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  P S Goldman-Rakic,et al.  Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys , 1988, The Journal of comparative neurology.

[24]  V. Caviness,et al.  Determinants of cell shape and orientation: A comparative Golgi analysis of cell‐axon interrelationships in the developing neocortex of normal and reeler mice , 1979, The Journal of comparative neurology.

[25]  F. Valverde,et al.  Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study , 1989, The Journal of comparative neurology.

[26]  C. Shatz,et al.  Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  C. Shatz,et al.  Subplate neurons pioneer the first axon pathway from the cerebral cortex. , 1989, Science.

[28]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[29]  H. Uylings,et al.  Prenatal development of GABA‐ergic neurons in the neocortex of the rat , 1989, The Journal of comparative neurology.

[30]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[31]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[32]  M. Marín‐Padilla,et al.  Early Ontogenesis of the Human Cerebral Cortex , 1988 .

[33]  J. Morrison,et al.  An immunohistochemical study of six biologically active peptides in the human brain. , 1986, Human neurobiology.

[34]  G Meyer,et al.  Forms and spatial arrangement of neurons in the primary motor cortex of man , 1987, The Journal of comparative neurology.

[35]  S. Vincent,et al.  Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase-positive neurons in cat cerebral white matter , 1988, Brain Research.

[36]  H. Soreq,et al.  Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin. , 1988, Developmental biology.

[37]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[38]  C. Shatz,et al.  Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons , 1987, Nature.

[39]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[40]  C. Shatz,et al.  Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population , 1989, The Journal of comparative neurology.

[41]  G. Meyer,et al.  Early postnatal development of vasoactive intestinal polypeptide‐ and peptide histidine isoleucine‐immunoreactive structures in the cat visual cortex , 1989, The Journal of comparative neurology.

[42]  G. Meyer,et al.  Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat , 1984, The Journal of comparative neurology.

[43]  G. Meyer,et al.  The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study , 1989, Neuroscience.