Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms

A novel approach is presented in this article for obtaining inverse mapping of thermodynamically Pareto-optimized ideal turbojet engines using group method of data handling (GMDH)-type neural networks and evolutionary algorithms (EAs). EAs are used in two different aspects. Firstly, multi-objective EAs (non–dominated sorting genetic algorithm-II) with a new diversity preserving mechanism are used for Pareto-based optimization of the thermodynamic cycle of ideal turbojet engines considering four important conflicting thermodynamic objectives, namely, specific thrust ({ST}), specific fuel consumption ({SFC}), propulsive efficiency (ηp), and thermal efficiency (ηt). The best obtained Pareto front, as a result, is a data table representing data pairs of non-dominated vectors of design variables, which are Mach number and pressure ratio, and the corresponding four objective functions. Secondly, EAs and singular value decomposition are deployed simultaneously for optimal design of both connectivity configuration and the values of coefficients, respectively, involved in GMDH-type neural networks which are used for the inverse modelling of the input–output data table obtained as the best Pareto front. Therefore, two different polynomial relations among the four thermo-mechanical objectives and both Mach number and pressure ratio are searched using that Pareto front. The results obtained in this paper are very promising and show that such important relationships may exist and could be discovered using both multi-objective EAs and evolutionarily designed GMDH-type neural networks.

[1]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[2]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[3]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[4]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[5]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[6]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[9]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[10]  Guy Albert Dumont,et al.  System identification and control using genetic algorithms , 1992, IEEE Trans. Syst. Man Cybern..

[11]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[12]  Hitoshi Iba,et al.  System Identification using Structured Genetic Algorithms , 1993, ICGA.

[13]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[14]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[15]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[16]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[17]  Andrzej Ameljańczyk,et al.  Multicriteria Optimization in Engineering Design , 1994 .

[18]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[19]  Taisuke Sato,et al.  A Numerical Approach to Genetic Programming for System Identification , 1995, Evolutionary Computation.

[20]  H. Auracher Thermal design and optimization , 1996 .

[21]  C. Fonseca,et al.  Non-Linear System Identification with Multiobjective Genetic Algorithms , 1996 .

[22]  Jack D. Mattingly,et al.  Elements of Gas Turbine Propulsion , 1996 .

[23]  V William Porto Evolutionary computation approaches to solving problems in neural computation , 1997 .

[24]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[25]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[26]  X. Yao Evolving Artificial Neural Networks , 1999 .

[27]  Visakan Kadirkamanathan,et al.  Multiobjective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms , 1999 .

[28]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[29]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  Alan D. Christiansen,et al.  Multiobjective optimization of trusses using genetic algorithms , 2000 .

[31]  Nader Nariman-zadeh,et al.  Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition , 2002 .

[32]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[33]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[34]  Andrea Toffolo,et al.  Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design , 2002 .

[35]  Ko-Hsin Liang,et al.  A new multiobjective evolutionary algorithm , 2002, Eur. J. Oper. Res..

[36]  Jonathan A. Wright,et al.  Optimization of building thermal design and control by multi-criterion genetic algorithm , 2002 .

[37]  Nader Nariman-zadeh,et al.  Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition , 2002 .

[38]  Anikó Ekárt,et al.  Genetic algorithms in computer aided design , 2003, Comput. Aided Des..

[39]  Vasechkina Evolving polynomial neural network by means of genetic algorithm : some application examples , 2003 .

[40]  Nader Nariman-zadeh,et al.  Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process , 2003 .

[41]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using a cultural algorithm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[42]  Klaus Lucas,et al.  Pareto optimization of a combined cycle power system as a decision support tool for trading off investment vs. operating costs , 2003 .

[43]  Ernesto Benini,et al.  Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms , 2003, Evolutionary Computation.

[44]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[45]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[46]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .