The parsec–scale relationship between ICO and AV in local molecular clouds

We measure the parsec-scale relationship between integrated CO intensity (I_CO) and visual extinction (A_V) in 24 local molecular clouds using maps of CO emission and dust optical depth from Planck. This relationship informs our understanding of CO emission across environments, but clean Milky Way measurements remain scarce. We find uniform I_CO for a given A_V, with the results bracketed by previous studies of the Pipe and Perseus clouds. Our measured I_CO-A_V relation broadly agrees with the standard Galactic CO-to-H2 conversion factor, the relation found for the Magellanic clouds at coarser resolution, and numerical simulations by Glover & Clark (2016). This supports the idea that CO emission primarily depends on shielding, which protects molecules from dissociating radiation. Evidence for CO saturation at high A_V and a threshold for CO emission at low A_V varies remains uncertain due to insufficient resolution and ambiguities in background subtraction. Resolution of order 0.1 pc may be required to measure these features. We use this I_CO-AV relation to predict how the CO-to-H2 conversion factor (X_CO) would change if the Solar Neighborhood clouds had different dust-to-gas ratio (metallicity). The calculations highlight the need for improved observations of the CO emission threshold and HI shielding layer depth. They are also sensitive to the shape of the column density distribution. Because local clouds collectively show a self-similar distribution, we predict a shallow metallicity dependence for X_CO down to a few tenths of solar metallicity. However, our calculations also imply dramatic variations in cloud-to-cloud X_CO at subsolar metallicity.

[1]  A. Bolatto,et al.  Physical Properties of Molecular Clouds at 2 pc Resolution in the Low-metallicity Dwarf Galaxy NGC 6822 and the Milky Way , 2017, 1701.02748.

[2]  S. Glover,et al.  Is atomic carbon a good tracer of molecular gas in metal-poor galaxies? , 2015, 1509.01939.

[3]  T. Henning,et al.  Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL , 2015, 1507.00538.

[4]  A. Bolatto,et al.  The relationship between CO emission and visual extinction traced by dust emission in the Magellanic Clouds , 2015, 1504.02548.

[5]  F. Le Petit,et al.  H i-TO-H2 TRANSITIONS AND H i COLUMN DENSITIES IN GALAXY STAR-FORMING REGIONS , 2014, 1404.5042.

[6]  H. Rix,et al.  A LARGE CATALOG OF ACCURATE DISTANCES TO MOLECULAR CLOUDS FROM PS1 PHOTOMETRY , 2014, 1403.3393.

[7]  R. Klessen,et al.  Understanding star formation in molecular clouds - I. Effects of line-of-sight contamination on the column density structure , 2014, 1403.2996.

[8]  R. Klessen,et al.  THE CO-TO-H2 CONVERSION FACTOR ACROSS THE PERSEUS MOLECULAR CLOUD , 2014, 1401.5117.

[9]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[10]  S. Glover,et al.  On column density thresholds and the star formation rate , 2013, 1306.5714.

[11]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[12]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[13]  C. Kramer,et al.  LOW CO LUMINOSITIES IN DWARF GALAXIES , 2012, 1203.4231.

[14]  J. Pety,et al.  Imaging diffuse clouds: bright and dark gas mapped in CO , 2012, 1202.6523.

[15]  J. Peek,et al.  A HIGH-RESOLUTION STUDY OF THE H i–H2 TRANSITION ACROSS THE PERSEUS MOLECULAR CLOUD , 2011, 1110.2745.

[16]  M. Lombardi,et al.  2MASS wide field extinction maps - IV. The Orion, Monoceros R2, Rosette, and Canis Major star forming regions , 2011, 1107.5096.

[17]  S. Glover,et al.  Is molecular gas necessary for star formation , 2011, 1105.3073.

[18]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[19]  S. Glover,et al.  Approximations for modelling CO chemistry in GMCs: a comparison of approaches , 2011, 1102.0670.

[20]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[21]  Di Li,et al.  THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD , 2010, 1007.5060.

[22]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[23]  S. Glover,et al.  On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds , 2010, 1003.1340.

[24]  M. Lombardi,et al.  2MASS wide field extinction maps III. The Taurus, Perseus, and California cloud complexes , 2010 .

[25]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[26]  A. Bolatto,et al.  THE STRUCTURE OF A LOW-METALLICITY GIANT MOLECULAR CLOUD COMPLEX , 2009, 0907.2240.

[27]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[28]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[29]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H i AND H2 COLUMN DENSITIES , 2008, 0811.0004.

[30]  M. Lombardi,et al.  2MASS wide field extinction maps II. The Ophiuchus and the Lupus cloud complexes , 2008, 0809.3740.

[31]  N. Abel,et al.  Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships , 2008, 0807.0940.

[32]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[33]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[34]  L. Blitz,et al.  Extinction in the Large Magellanic Cloud , 2007, astro-ph/0703421.

[35]  T. Bell,et al.  Molecular line intensities as measures of cloud masses - I. Sensitivity of CO emissions to physical parameter variations , 2006, astro-ph/0607428.

[36]  M. Lombardi,et al.  2MASS wide field extinction maps. I. The Pipe nebula , 2006, astro-ph/0606670.

[37]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[38]  E. Rosolowsky,et al.  Giant Molecular Clouds in M33. II. High-Resolution Observations , 2003, astro-ph/0307322.

[39]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[40]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[41]  F. Schloerb,et al.  ANATOMY OF THE GEMINI OB1 MOLECULAR CLOUD COMPLEX , 1995 .

[42]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[43]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[44]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[45]  H. Liszt Conversion from /sup 12/CO integrated intensity at 2. 6 millimeter wavelength to hydrogen column density , 1982 .

[46]  N. Scoville,et al.  Extragalactic co: gas distributions which follow the light in IC 342 and NGC 6946 , 1982 .

[47]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[48]  R. Dickman,et al.  The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds , 1978 .

[49]  B. Draine Photoelectric heating of interstellar gas , 1978 .