An Integrated Platform for Analyzing Molecular-Biological Data Within Clinical Studies

To investigate molecular-biological causes and effects of diseases and their therapies it becomes increasingly important to combine data from clinical trials with high volumes of experimental genetic data and annotations. We present our approach to integrate such data for two large collaborative cancer research studies in Germany. Our platform interconnects a commercial study management system (eRN) with a data warehouse-based gene expression analysis system (GeWare). We utilize a generic approach to import different anonymized pathological and patient-related annotations into the warehouse. The platform also integrates different forms of experimental data and public molecular-biological annotation data and thus supports a wide range of genetic analyses for both clinical and non-clinical parameters.

[1]  H. Lehmann,et al.  Nucleic Acid Research , 1967 .

[2]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[3]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[4]  C. Mecucci FISH (fluorescent in situ hybridization): the second youth of cytogenetics. , 1995, Haematologica.

[5]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[6]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[7]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[8]  David Botstein,et al.  The Stanford Microarray Database , 2001, Nucleic Acids Res..

[9]  S. Amladi,et al.  Online Mendelian Inheritance in Man 'OMIM'. , 2003, Indian journal of dermatology, venereology and leprology.

[10]  Sergio Contrino,et al.  ArrayExpress: a public database of gene expression data at EBI. , 2003, Comptes rendus biologies.

[11]  P. A. Covitz Class struggle: expression profiling and categorizing cancer , 2003, The Pharmacogenomics Journal.

[12]  Carlos Alberto Heuser,et al.  Integrating Biological Databases , 2003, SBBD.

[13]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[14]  Erhard Rahm,et al.  A Data Warehouse for Multidimensional Gene Expression Analysis , 2004 .

[15]  Erhard Rahm,et al.  Flexible Integration of Molecular-Biological Annotation Data: The GenMapper Approach , 2004, EDBT.

[16]  Mushtaq Ahmed,et al.  Database Challenges in the Integration of Biomedical Data Sets , 2004, VLDB.

[17]  Amos Bairoch,et al.  Swiss-Prot: Juggling between evolution and stability , 2004, Briefings Bioinform..

[18]  T. Caspersson,et al.  Identification of human chromosomes by DNA-binding fluorescent agents , 2004, Chromosoma.

[19]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[20]  Erhard Rahm,et al.  Hybrid Integration of Molecular-Biological Annotation Data , 2005, DILS.

[21]  K. Buetow Cyberinfrastructure: Empowering a "Third Way" in Biomedical Research , 2005, Science.

[22]  O. Kallioniemi Dissection of molecular pathways of cancer by high-throughput biochip technologies and RNA interference , 2005, Breast Cancer Research.

[23]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..