The Uniformity Principle on Traced Monoidal Categories

The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin’s principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constructions. We also characterize some specific cases of our constructions as suitable enriched limits.

[1]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[2]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[3]  Claudio Hermida,et al.  Paracategories I: internal paracategories and saturated partial algebras , 2003, Theor. Comput. Sci..

[4]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[5]  Robert D. Tennent,et al.  Semantics of programming languages , 1991, Prentice Hall International Series in Computer Science.

[6]  M. Arbib,et al.  Partially additive categories and flow-diagram semantics☆ , 1980 .

[7]  Zoltán Ésik,et al.  Some varieties of iteration theories , 1984, Bull. EATCS.

[8]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[9]  Esfandiar Haghverdi,et al.  A categorical approach to linear logic, geometry of proofs and full completeness. , 2000 .

[10]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[11]  Masahito Hasegawa,et al.  The Uniformity Principle on Traced Monoidal Categories , 2003, Category Theory and Computer Science.

[12]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[13]  S. Lane Categories for the Working Mathematician , 1971 .

[14]  T. Kerler On braided tensor categories , 1994, hep-th/9402018.

[15]  Gordon D. Plotkin,et al.  Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[16]  Masahito Hasegawa,et al.  Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[17]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[18]  Mei Chee Shum Tortile tensor categories , 1994 .

[19]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[20]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[21]  Claudio Hermida,et al.  Paracategories II: adjunctions, fibrations and examples from probabilistic automata theory , 2004, Theor. Comput. Sci..