The basic Procrustes problem is to transform a matrix \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{1}$\end{document} to \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{1}\mathbf{T}$\end{document} in order to match a target matrix \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{2}$\end{document}. Matching necessitates that \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{1}$\end{document} and \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{2}$\end{document} have the same number of rows identified with the same entities but the columns are unrestricted in type and number. Special cases discussed are when T is an orthogonal, projection, or direction‐cosine matrix. Sometimes, both matrices are transformed and size parameters referring to isotropic and various forms of anisotropic scaling may be incorporated. Procrustes methods may be generalized to cover K transformed matrices \documentclass{article}\usepackage{amsmath}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{amsfonts}\pagestyle{empty}\begin{document}$\mathbf{X}_{1}\mathbf{T}_{1}, \ldots, \mathbf{X}_{\mathrm{K}}\mathbf{T}_{\mathrm{K}}$\end{document}, in which case their average (the group average) is important. Applications are in shape analysis, image analysis, psychometrics etc. Copyright © 2010 John Wiley & Sons, Inc.
[1]
Casper J. Albers,et al.
Quadratic minimisation problems in statistics
,
2011,
J. Multivar. Anal..
[2]
R. Cattell,et al.
The Procrustes Program: Producing direct rotation to test a hypothesized factor structure.
,
2007
.
[3]
Nickolay T. Trendafilov,et al.
On a differential equation approach to the weighted orthogonal Procrustes problem
,
1998,
Stat. Comput..
[4]
Deborah F. Swayne,et al.
A weighted procrustes criterion
,
1991
.
[5]
D. McHale,et al.
Analyse Conjointe de Tableaux Quantitatifs
,
1990
.
[6]
G. Grisetti,et al.
Further Reading
,
1984,
IEEE Spectrum.
[7]
Ingwer Borg,et al.
A direct approach to individual differences scaling using increasingly complex transformations
,
1978
.
[8]
J. Chang,et al.
Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition
,
1970
.