1H, 13C and 15N backbone and partial side-chain resonance assignments of the C-terminal domain of HIV-1 Pr55Gag encompassed in NCp15

[1]  G. Clore,et al.  Conformation and dynamics of the Gag polyprotein of the human immunodeficiency virus 1 studied by NMR spectroscopy , 2015, Proceedings of the National Academy of Sciences.

[2]  R. Gorelick,et al.  Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. , 2014, Virus research.

[3]  P. Bieniasz,et al.  Global Changes in the RNA Binding Specificity of HIV-1 Gag Regulate Virion Genesis , 2014, Cell.

[4]  R. Konrat,et al.  BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins , 2013, Journal of biomolecular NMR.

[5]  P. Henklein,et al.  HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. , 2013, Biochimica et biophysica acta.

[6]  C. Tisné,et al.  Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. , 2012, Virus research.

[7]  V. Dussupt,et al.  Identification of the HIV-1 NC Binding Interface in Alix Bro1 Reveals a Role for RNA , 2012, Journal of Virology.

[8]  F. Poulsen,et al.  Disordered proteins studied by chemical shifts. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[9]  K. Nagashima,et al.  Basic Residues in the Nucleocapsid Domain of Gag Are Critical for Late Events of HIV-1 Budding , 2010, Journal of Virology.

[10]  Tim J Stevens,et al.  DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. , 2010, Journal of magnetic resonance.

[11]  V. Chukkapalli,et al.  Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain , 2010, Proceedings of the National Academy of Sciences.

[12]  I. Alves,et al.  The role of membranes in the organization of HIV-1 Gag p6 and Vpr: p6 shows high affinity for membrane bilayers which substantially increases the interaction between p6 and Vpr. , 2009, Journal of medicinal chemistry.

[13]  E. Barklis,et al.  Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids , 2009, Journal of Virology.

[14]  I. Alves,et al.  Structural studies of HIV-1 Gag p6ct and its interaction with Vpr determined by solution nuclear magnetic resonance. , 2009, Biochemistry.

[15]  Kunio Nagashima,et al.  The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding , 2009, PLoS pathogens.

[16]  P. Schanda,et al.  A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. , 2007, Journal of magnetic resonance.

[17]  K. Nagashima,et al.  Structural basis for viral late-domain binding to Alix , 2007, Nature Structural &Molecular Biology.

[18]  A. Rein,et al.  Interactions of HIV-1 Gag with assembly cofactors. , 2006, Biochemistry.

[19]  Uwe Tessmer,et al.  Solution Structure of the Human Immunodeficiency Virus Type 1 p6 Protein* , 2005, Journal of Biological Chemistry.

[20]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[21]  David S Wishart,et al.  RefDB: A database of uniformly referenced protein chemical shifts , 2003, Journal of biomolecular NMR.

[22]  E. Freed,et al.  Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P E Wright,et al.  Sequence-dependent correction of random coil NMR chemical shifts. , 2001, Journal of the American Chemical Society.

[24]  É. Cohen,et al.  Incorporation of Vpr into Human Immunodeficiency Virus Type 1 Requires a Direct Interaction with the p6 Domain of the p55 Gag Precursor* , 1999, The Journal of Biological Chemistry.

[25]  N. Tjandra,et al.  Dynamical behavior of the HIV-1 nucleocapsid protein. , 1998, Journal of molecular biology.

[26]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[27]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[28]  N. Jullian,et al.  Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. , 1992, The EMBO journal.

[29]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.